От чего зависит свойство металлов с точки зрения их внутреннего строения

От чего зависит свойство металлов с точки зрения их внутреннего строения

В изготовлении машин и рабочих установок, наиболее применяемыми стали металлы и их сплавы. Металлы – это вещества, которые обладают высокой электропроводностью и теплопроводностью, блеском, ковкостью и другими свойствами, которые легко и не очень поддаются металлообработке.

В промышленности все металлы и сплавы делят на две категории: цветные и черные. Так называемые черные металлы – это чистое железо и сплавы на основе его материала. К цветным – относятся остальные виды металлов.

Для правильного выбора металла для изготовления конструкций механизмов с дальнейшим анализом ее использования, механических и других свойст, которые влияют на надежность и работоспособность машин – нужно знать внутреннее строение, механические, физико-химические и технологические свойства, а также каким методом проделывать обработку металла и нуждается ли материал в резке металла (если материал нужно обработать резкой, то лучше это сделать при помощи плазменной резки металла).

От чего зависит свойство металлов с точки зрения их внутреннего строения

В твердом состоянии все металлы и сплавы имеют кристаллическое строение. Молекулы металлов (атомы, ионы) в пространстве располагаются в строго определенном порядке и между собой образуют кристаллическую решетку.

Образуется кристаллическая решетка посредством обработки металла, т.е. перехода его состояния из жидкого в твердое. Такой процесс носит название – кристаллизация. Впервые эти процессы были изучены ученым из России — Д.К.

Черновым.

Процесс кристаллизации : Сам процесс состоит из двух частей. У металла, который находится в жидком состоянии, атомы непрерывно двигаются.

Если понизить температуру, то скорость передвижения атомов уменьшается, они сближаются и группируются в кристаллы (поэтому для того, чтобы изменить форму и структуру изделия, его подвергают металлообработке при помощи нагревания) – это первая часть, при ней образуются центры кристаллизации.

Затем идет рост вокруг центров кристаллизации – это уже вторая часть процесса. В самом начале рост кристаллов протекает свободно, но потом, рост одних – мешает росту другим, в результате формируется неправильная форма группы кристаллов, которые называются зёрнами. Размер полученных зёрен, значительно влияет на дальнейшую металлообработку изделий.

Металл, состоящий из крупных зёрен — имеет низкую сопротивляемость к удару, если производится резка металла, то появляется трудность в получении низкой шероховатости на поверхности такого металла. Размеры зёрен зависят от условий кристаллизации и свойств самого металла.

Способы изучения металлической структуры : Исследование структуры металлов и сплавов производится посредством макро и микро – анализов, а также и другими способами. При помощи макро-анализа изучается строение металла, которое можно увидеть невооруженным глазом или при помощи лупы. Эта структура определяется по макрошлифам или изломам.

Макрошлиф – это образец металла, одна из сторон которого травлена кислотой и отшлифована. При микро-анализе изучается размеры и формы зёрен, их структурные составляющие, выявляют микродефекты и качество термической обработки металла . Этот анализ производится по микрошлифам при помощи микроскопа.

Микрошлиф – это некий образец металла, который имеет плоскую отполированную поверхность, травленую слабым раствором кислоты.

Свойства металлов : Металлические свойства подразделяются на физико-химические, технологические и механические. Под механическими свойствами понимается сопротивляемость металла к воздействию на него внешней силы. К механическим свойствам относятся вязкость, прочность, стойкость и другие.

Прочность – это свойства металла в определенных условия не разрушаться, но воспринимать воздействие внешних сил. Это свойство является важным показателем при выборе метода обработки металла. Вязкость – это сопротивление материала при ударной нагрузке.

Твердость – свойства материала к сопротивлению внедрения в него другого материала.

От чего зависит свойство металлов с точки зрения их внутреннего строения

К основными технологическими свойствами относятся — ковкость, свариваемость, свойства плавления, обрабатываемость резанием и другие. Ковкость – это свойства материала подвергаться металлообработке ковкой и другим методам обработки давлением.

Свариваемость – свойства материала создавать прочные сварные соединения. Свойства плавления – свойства материала в расплавленном виде заполнять литейные формы и создавать плотные отливки с нужной конфигурацией.

Обрабатываемость резанием – свойства материала подвергаться резке металла для того, чтобы придать детали нужную форму, размер и шероховатость поверхности. Лучшим методом резки металлов является плазменная резка металла. После этого процесса металла практически не нуждается в дальнейшей металлообработке.

Для того, чтобы получать качественное изделие с хорошим внешним и внутренним строением, нужно хорошо разбираться в строении металлов, ведь только так можно получить отличный результат.

Строение металлов и сплавов. Основы теории термообработки

В твердом состоянии любой металл обладает кристаллическим строением. Для этого вида строения характерна упорядоченность расположения ионов (атомов). Элементарные ячейки периодически повторяются в пространстве, образуя кристаллическую решетку. Внутри кристаллической решетки располагаются положительно заряженные ионы, или как их называют по-другому – атомные ядра.

Вокруг атомных ядер в постоянном движении находятся отрицательно заряженные частицы – электроны. Количество электронов, находящихся между ионами и определяет уровень теплопроводности металла. Ионы (атомы) внутри кристаллической решетки находятся в непрерывном тепловом колебании.

Если температура повышается, то амплитуда колебаний атомов резко возрастает, если температура понижается, то амплитуда замедляется. Плавка металла разрушает кристаллическую решетку, выпуская ионы в беспорядочное движение в пространстве. Элементарная ячейка – это главный элемент кристаллической решетки. Увидеть ее вы можете на изображении 1. Изображена решетка в виде куба.

Однако можно заметить, что каждый атом этой решетки одновременно принадлежит восьми соседним элементарным ячейкам.

На изображении 2 вы можете увидеть наиболее распространенные типы кристаллических решеток. а) Объемно-центрированная решетка. Как видно из рисунка восемь атомов данного типа решетки располагается в углах куба, а один находится в центре. Данная кристаллическая решетка свойственна следующим металлами – натрий, литий, свинец, вольфрам и т.п.

б) Гранецентрированная решетка. Внимательно рассмотрев ее изображение, вы заметите, что восемь атомов данного типа решетки расположено в уголках куба, а в центре каждой из шести граней размещается еще по одному атому. Свойственна гранецентрированная кубическая решетка следующим металлам: медь, серебро, алюминий, золото и т.п.

в) Гексагональная решетка имеет расположение атомов в углах и центре основания призмы. При этом три атома располагаются в средней плоскости призмы. Характерен данный вид кристаллической решетки следующим металлам: титан, магний, цинк, бериллий и другие металлы.

  Ножницы по металлу: характеристики, типы, виды

Индукционный нагрев способен проникать в кристаллические решетки металла, равномерно распределяя тепло и не нарушая их структуру. Автоматизированное программное обеспечение, которым снабжена каждая установка ЭЛСИТ позволяет проконтролировать процесс обработки, чтобы та не нарушила структуру кристаллической решетки.

Дефекты кристаллической решетки

Ничто в нашем мире не идеально. Кристаллы металлов не обладают идеально правильным расположением атомов внутри кристаллической решетки. Практически всегда внутри кристаллов встречаются различные несовершенства (дефекты строения).

В некоторой степени дефекты кристаллической решетки определяют физические и механические свойства металлов. Дефекты строения кристаллической решетки можно подразделить на три вида: точечные, поверхностные и линейные. Среди точечных дефектов наиболее распространенными являются – вакансии. На изображении 3 вы можете заметить вакансии.

Вакансии представляет собой дефект кристалла с отсутствующим внутри кристаллической решетки атомом.

Еще одним точечным дефектом является дислоцированный атом. Дислоцированный атом – это дефект кристаллической решетки, при котором один из атомов выходит из равновесия. Вы можете наблюдать данный дефект на изображении 4.

Ни вакансии, ни дислоцированный атом не остаются без движения. Их непрерывное перемещение внутри кристаллической решетки называется диффундированием. Так как энергия между атомами распределяется неравномерно, вакансия может передвигаться внутри атома до тех пор, пока не выйдет из него на поверхность кристалла.

Дислоцированные атомы и вакансии искажают кристаллическую решетку, по этой причине свойства кристалла могут меняться. При проведении термообработки важно учитывать все эти факторы. Индукционный нагрев в некоторых случаях может помочь избавиться от дефекта кристаллической решетки, равномерно распределив тепло по всей поверхности кристалла.

Наиболее распространенными линейным дефектом кристаллической решетки является дислокация. Дислокация – это нарушение правильного кристаллического строения металла. На изображении пять вы можете разглядеть дислокацию атомов. а) Дислокация расположена на левом краю кристалла. б) Центральное расположение дислокации.

в) Дислокация расположена на правом краю кристалла.

Поверхностные дефекты появляются на границе зерен или субзерен, если атомы обладают не таким правильным расположением, как внутри зерна. Как правило, по границам зерен скапливаются дислокации и вакансии. На изображении 6 вы можете разглядеть поверхностные дефекты кристаллической решетки, разделяющие зерно на блоки.

Сплавы металлов — структура

На сегодняшний день производители все чаще стали использовать при создании металлических изделий не чистые металлы, а сплавы. Сплавы металла – это вещества, которые образовались в результате затвердения расплава, состоящего из нескольких компонентов.

Компонентами формирования сплавов служат только металлы или металлы с небольшим количеством примесей. Металлические сплавы подразделяются на двойные, тройные и т.п.

(по количеству входящих в них компонентов), а также на черные и цветные металлы (в зависимости от того, какой металл лежит в основе сплава). Если строение металлов понять проще, то строение сплавов существенно отличается.

Строение металлического сплава довольно сложное. Существует несколько видов сплавов, в зависимости от характера взаимодействия его компонентов друг с другом.

  1. Химическое соединение – сплавы металлов, элементы которого могут вступать друг с другом в химическое взаимодействие, тем самым создавая новую кристаллическую решетку. Образовавшееся химическое соединение обладает уже совсем другими свойствами, чем компоненты, вошедшие в его состав.
  2. Механическая смесь – сплавы металла, компоненты которого не растворяются, находясь в твердом состоянии, а также не вступают друг с другом в химическое соединение. Как правило, механическая смесь не изменяет кристаллические решетки металлов, входящих в сплав.
  3. Твердый раствор – сплав, образовавшийся во время охлаждения жидкого раствора сплава, компоненты которого сохранили растворимость, а при кристаллизации смогли образовать единую кристаллическую решетку.
Читайте также:  Как работать с жидким металлом

Твердые растворы также подразделяются на два главных типа: внедрения и замещения. Если посмотреть на изображение 7, то вы отметите на первой картинке, как атомы растворимого компонента начали замещать атомы растворителя.

При этом никогда не ясно, в каком соотношении атомы заменят друг друга. Однако важно отметить, что необходимо соблюдение двух главных условий, чтобы началась замена атомов. Первое – оба компонента должны иметь схожие кристаллические решетки.

Второе – размеры атомов входящих в состав сплава компонентов должны различаться лишь незначительно (не более 8%).

Атомы, входящие в состав твердых растворов внедрения, значительно отличаются друг от друга по размерам. Справа на изображении 7 вы можете заметить, как атомы одного компонента внедряются в пустоты кристаллической решетки другого. Во время формирования твердого раствора кристаллическая решетка искажается, а ее параметры меняются.

В большинстве случаев атомы распределяются беспорядочно, однако бывают случаи, когда она размещаются внутри кристаллической решетки упорядоченно (при медленном охлаждении расплава меди и золота). Твердые растворы с равномерно распределенными атомами внутри кристаллической решетки называются сверхструктурными.

Индукционный нагрев одинаково хорошо справляется и с чистыми металлами и с их сплавами.

Строение металлов и сплавов, их кристаллизация

Внутренним строением металлов

называется строение и взаимное расположение их атомов, а также более крупная структура, видимая в микроскоп или невоору­женным глазом.

Металлы по внутреннему строению представляют со­бой совокупность нейтральных атомов, положительно или отрицательно заряженных ионов и свободных элек­тронов, образующих так называемый «электронный газ».

Наличие «электронного газа» обусловливает высокую электро- и теплопроводность металлов, а взаимосвязь свободных электронов между собой и с ионами создает прочную связь, называемую металлической.

Специфика металлической связи делает металлы пластичными (ков­кими).

Кроме природы атомов на свойства металлов влияют характер связи между атомами, расстояние между ни­ми и порядок их расположения.

Все металлы в твердом состоянии имеют кристалли­ческое строение, т.е. их атомы (ионы) расположены в строгом, периодически повторяющемся порядке, обра­зуя в пространстве атомно-кристаллическую решетку (в противоположность аморфным твердым телам, атомы которых расположены в пространстве хаотично).

Порядок расположения атомов у различных метал­лов неодинаков. Обычно он определяется простыми характерными для большинства металлов (рис. 6) или сложными кристаллическими решетками. Линии на рис.

6 условные Атомы в действительности колеблются возле положений равновесия, т. е. в узлах кристалличе­ской решетки. Расстояние между атомами в кристалли­ческой решетке измеряется в ангстремах (1 Å=10-9нм).

У большинства металлов расстояние между атомами на­ходится в пределах 0,28—0,8 нм.

Рис 6. Порядок расположения атомов в простых решеткаха — объемная центрированной кубической (9 атомов), б — гранецентрирован­ной кубической (14 атомов), в — гексагональной плотноупакованной (17 атомов)

Наименьший объем кристалла, дающий представле­ние об атомной структуре металла во всем объеме, на­зывается элементарной кристаллической ячейкой.

Получаемые обычным способом металлы представля­ют собой поликристаллические тела, состоящие из мно­жества элементарных ячеек, ориентированных относи­тельно друг друга самым различным образом.

Ячейки имеют неправильную форму и называются кристаллита­ми, или зернами.

Если сочетание элементарных ячеек правильное, по расположению атомов повторяющее эле­ментарную ячейку, то образовавшееся тело называется монокристаллом.

Металлические сплавы, как и металлы, имеют кри­сталлическое строение. При этом в зависимости от взаимодействия компонентов они подразделяются на твердые растворы, химические соединения и механиче­ские смеси.

Твердые растворы образуются тогда, когда при сплавлении атомы одного элемента в разных количест­вах входят в кристаллическую решетку другого элемента, не изменяя в значительной мере ее формы.

Элемент, сохранивший форму своей решетки, называется раство­рителем, а элемент, атомы которого вошли в эту решетку,— растворенным.

По размещению атомов растворенного элемента в решетке растворителя различают твердые растворы замещения

(атомы растворенного элемен­та располагаются в узлах решетки растворителя) итвердые растворы внедрения (атомы растворенного эле­мента находятся между атомами растворителя и узлами его решетки).

Если входящие в состав твердого раствора замеще­ния компоненты имеют близкое строение решеток и ато­мов, то такие элементы могут образовывать непрерыв­ный ряд твердых растворов, т. е. количество замещенных атомов может изменяться от 0 до 100 %.

При этом считается, что растворителем является тот элемент, содержание которого в сплаве более 50 %.

Растворы внедрения образуются элементами, сильно отличающимися строением решетки и размерами атомов.

Твердые растворы являются гомогенными (однород­ными) сплавами, так как их структура представляет собой одинаковые по составу и свойствам зерна. Свой­ства твердых растворов в значительной степени могут отличаться от свойств входящих в него компонентов. Все металлы в той или иной степени могут растворять­ся один в другом, образуя твердые растворы.

Химические соединенияобразуются при химическом взаимодействии атомов компонентов сплава, сопровож­дающемся значительным тепловым эффектом. При этом кристаллическая решетка химического соединения и все его свойства могут резко отличаться от решетки и свойств компонентов.

В отличие от твердых растворов химические соединения обычно образуются между ком­понентами, имеющими большое различие в электронном строении атомов. Типичными примерами химических соединений являются соединения магния с оловом, свин­цом, сурьмой, висмутом, серой, селеном, теллуром и др.

По своей структуре они гомогенны.

Химические соединения металлов называются интер­металлическими

(интерметаллидами), а соединения ме­таллов с неметаллами (нитридами, гидридами, борида­ми, карбидами), обладающие металлической связью, —металлическими соединениями.

Механические смесиобразуются тогда, когда при затвердении расплава атомы его компонентов не пере­мешиваются, а кристаллизуются в характерную каждо­му решетку.

Структура таких сплавов гетерогенна (не­однородна) и представляет собой смесь кристаллов ком­понентов сплава, сохранивших свою структуру.

Рис. 7. Кривые охлаждения аморфного (а

), кристаллического тела(б)и металлов(в),гдеtк tп — температура кристаллизации и пере­охлаждения, °C; (T1-T2) — время кристаллизации, с.

Строение кристаллического тела обусловливает сле­дующие особенные их свойства по сравнению с аморф­ными:

§ различие свойств монокристаллов в различных на­правлениях, т. е. анизотропность, или векториальность, свойств;

§ наличие плоскостей скольжения, приложение внеш­них сил приводит к скольжению (сдвигу) одной плоско­сти относительно другой;

§ существование критической температуры при затвер­девании или плавлении, при которой происходит переход из жидкого (расплавленного) состояния в твердое или наоборот.

Переход металла из жидкого состояния в твердое называется кристаллизацией, а из твердого в жидкое — плавлением. Если образование кристаллов происходит из жидкости при ее охлаждении, то этот процесс назы­вается первичной кристаллизацией, если образование кристаллов идет в твердом состоянии тела, — вторичной кристаллизацией.

Процессы кристаллизации графически изображают кривыми, строящимися в координатах температура — время (рис. 7).

  • Явление переохлаждения в кристаллизующемся ме­талле объясняется тем, что в период затвердевания происходит резкое снижение подвижности атомов, вследствие чего скачкообразно изменяется его внутренняя энер­гия. Это сопровождается выделением тепла, которое подогревает жидкую ванну и некоторое время (T1
  • Т2) удерживает ее температуру постоянной, пока жидкость полностью не закристаллизуется.
  • Степень переохлаждения тем больше, чем больше ско­рость охлаждения.

Русский ученый-металлург Д. К. Чернов в 1878 г. установил, что процесс кристаллизации состоит из не­скольких стадий. Первая стадия — образование зароды­шей (центров) кристаллизации.

На последующих стади­ях из этих центров образуются дендриты (древовидные образования), которые, срастаясь, образуют зерна (крис­таллиты).

При этом они не имеют правильной геометри­ческой формы, так как в местах соприкосновения расту­щих кристаллов рост граней прекращается.

Величина зерна металла — важнейшая характеристи­ка, которая определяет все основные его свойства. Мелко­зернистый металл имеет более высокие характеристики твердости, прочности, ударной вязкости, но у него пони­женная электропроводность, хуже магнитные свойства.

Размер зерна зависит от количества центров кристал­лизации и скорости роста кристаллов (скорости охлаж­дения). Чем больше центров кристаллизации и меньше скорость их роста, тем меньше будет зерно.

  1. Образование центров кристаллизации может проис­ходить самопроизвольно или на имеющихся в жидком металле частицах примесей, что используется при моди­фицировании
  2. — введении в жидкий металл примесей (модификаторов).
  3. На образование центров кристаллизации, а следова­тельно, и величину зерна влияет степень переохлаждения tк—tп

(см. рис. 7). Чем больше степень переохлаждения, тем больше центров кристаллизации и мельче образую­щееся зерно.

Общие сведения о металлах и сплавах

Металлы — кристаллические вещества, характеризующиеся высокими электро- и теплопроводностью, ковкостью, способностью хорошо отражать электромагнитные волны и другими специфическими свойствами. Свойства металлов обусловлены их строением: в их кристаллической решетке есть не связанные с атомами электроны, которые могут свободно перемещаться.

В технике обычно применяют не чистые металлы, а сплавы, что связано с трудностью получения чистых веществ, а также с необходимостью придания металлам требуемых свойств.

Сплавы — это системы, состоящие из нескольких металлов или металлов и неметаллов. Сплавы обладают всеми характерными свойствами металлов. В строительстве применяют сплавы железа с углеродом (сталь, чугун), меди и олова (бронза) и меди и цинка (латунь) и др. На практике термин «металлы» распространяют и на сплавы, поэтому далее он относится и к металлическим сплавам.

Применяемые в строительстве металлы делят на две группы: черные и цветные.

К черным металлам относятся железо и сплавы на его основе (чугун и сталь).

Сталь — сплав железа с углеродом (до 2,14%) и другими элементами. По химическому составу различают стали углеродистые и легированные, а по назначению — конструкционные, инструментальные и специальные.

Чугун — сплав железа с углеродом (более 2,14%), некоторым количеством марганца (до 2%), кремния (до 5%), а иногда и других элементов. В зависимости от строения и состава чугун бывает белый, серый и ковкий.

Читайте также:  Пересчет металл тонна на метры

К цветным металлам относятся все металлы и сплавы на основе алюминия, меди, цинка, титана и др.

Широкое использование металлов в строительстве и других отраслях экономики объясняется сочетанием у них высоких физико-механических свойств с технологичностью.

Металлы обладают высокой прочностью, причем прочность на изгиб и растяжение у них практически такая же, как и на сжатие (у каменных материалов прочность на изгиб и растяжение в 10… 15 раз ниже прочности на сжатие).

Так, прочность стали более чем в 10 раз превышает прочность бетона на сжатие и в 100…200 раз прочность на изгиб и растяжение; поэтому, несмотря на то что плотность стали (7850 кг/м ) в 3 раза выше плотности конструкционного бетона (2400 + 50 кг/м ), металлические конструкции при той же несущей способности значительно легче и компактнее бетонных.

Этому способствует также высокий модуль упругости стали (в 10 раз выше, чем у бетона и других каменных материалов). Еще более эффективны конструкции из легких сплавов.

Металлы очень технологичны: во-первых, изделия из них можно получать различными индустриальными методами (прокатом, волочением, штамповкой и т. п.), во-вторых, металлические изделия и конструкции легко соединяются друг с другом с помощью болтов, заклепок и сварки.

Однако с точки зрения строителя металлы имеют и недостатки. Высокая теплопроводность металлов требует устройства тепловой изоляции металлоконструкций зданий. Хотя металлы негорючи, но металлические конструкции зданий необходимо специально защищать от действия огня.

Это объясняется тем, что при нагревании прочность металлов резко снижается и металлоконструкции теряют устойчивость и деформируются. Большой ущерб экономике наносит коррозия металлов.

Металлы широко применяют в других отраслях промышленности, поэтому их использование в строительстве должно быть обосновано экономически.

  • —-
  • Наука, изучающая состав, строение и свойства металлов и сплавов, а также зависимость между внутренним строением (структурой) и свойствами металлических сплавов называется металловедением.
  • Отличительными особенностями металлов являются: блеск, ковкость, непрозрачность, теплопроводность и электропроводность.

Таким образом, под термином «металлы» понимают всю группу металлических материалов — чистые металлы и сплавы. Чистые металлы используют только в тех случаях, когда от материала требуются высокие показатели теплопроводности, электропроводности и высокая температура плавления. Эти свойства у них всегда выше, чем у сплавов.

  1. Основными материалами при монтаже металлоконструкций, трубопроводов и оборудования являются сплавы, имеющие по сравнению с чистыми металлами следующие преимущества: – более высокую прочность; – способность изменять свойства при изменении химического состава; » – способность улучшать свойства под влиянием термической обработки; – более низкую температуру плавлеиия; – большую текучесть в расплавленном состоянии; – меньшую усадку.
  2. Указанные свойства сплавов имеют большое практическое значение, так как позволяют получать всевозможные металлоконструкции с показателями, отвечающими требуемым эксплуатационным условиям.
  3. Применяемые в строительстве сплавы делят на две группы: I группа — сплавы на основе железа (сталь, чугун);

II группа—сплавы на основе металлов (сплавы на медной, алюминиевой, магниевой и другой основе — бронза, латунь, силумины и др.).

К физическим свойствам металлов относятся: удельный вес, теплопроводность, электропроводность и температура плавления.

Удельный вес — это вес 1 см3 металла, сплава или любого другого вещества, выраженный в граммах. Например, удельный вес железа равен 7,88 г/см3. Удельные веса наиболее распространенных металлов приведены в табл. 1.

Теплопроводность — способность металлов и сплавов проводить тепло. Теплопроводность измеряется количеством тепла, которое проходит по металлическому стержню сечением 1 см2 за 1 мин.

Электропроводность — способность металлов и, сплавов проводить электричество. Это свойство наиболее характерно для чистых металлов. Для сплавов более характерным является свойство, обратное электропроводности — электросопротивление.

Удельным электрическим сопротивлением называется сопротивление проводника сечением 1 мм2 и длиной 1 м, выраженное в омах.

Температура плавления — степень нагрева, при которой металл переходит из твердого состояния в жидкое (табл. 1).

  • К механическим свойствам металлов и сплавов относят: твердость, прочность, упругость, пластичность.
  • Эти свойства обычно являются решающими показателями, определяющими способность металлов сопротивляться прилагаемым к детали, узлам и металлоконструкциям внешним нагрузкам, характеризующим пригодность сплава” или изделия к различным условиям эксплуатации.
  • Твердость — способность металла сопротивляться внедрению в его поверхность другого, более твердого тела. ,
  • Прочность — способность металла сопротивляться разрушению при действии на него нагрузки.
  • Упругость—способность металла принимать первоначальную форму и размеры после прекращения действия нагрузки.
  • Пластичность (вязкость) — способность металла изменять первоначальные формы и размеры под действием нагрузки и сохранять приданные формы и размеры после прекращения ее действия.
  • К технологическим свойствам относят обрабатываемость резанием, ковкость, жидкотекучесть, усадку, свариваемость и другие свойства, определяющие пригодность материала к обработке тем или иным способом.
  • Обрабатываемость резанием — способность металла более или менее легко обрабатываться острым режущим инструментом.
  • Ковкость — способность металла поддаваться обработке давлением, принимать новую форму и размеры под влиянием прилагаемой нагрузки без нарушения целостности.
  • Жидкотекучесть — способность расплавленного металла или сплава заполнять литейную форму.
  • Усадка—уменьшение объема отливки при охлаждении сплава.
  • Свариваемость — способность металлов образовывать прочные соединения отдельных металлических заготовок путем их местного нагрева до расплавленного или пластического состояния.

Химические свойства металлов — это способность металлов вступать в соединения с различными веществами, и в первую очередь с кислородом. Чем легче металл вступает в соединение с другими элементами, тем легче он разрушается. Разрушение металлов и сплавов под действием окружающей среды называется коррозией.

Механические свойства металлов и способы их определения

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень.

чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств.

Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

  Терморегулятор для инкубатора: делаем своими руками

— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

  • — Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.
  • — Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.
  • — Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.
  • — Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Технологические характеристики

При оценке целесообразности выбора того или иного металла для решения конкретных практических, производственных задач, необходимо учитывать:

  • Ковкость. Под давлением производится обработка изделий. При этом полного разрушения не наблюдается, однако структура кристаллической решетки изменяется. В результате могут меняться механические, физические и даже химические факторы изделий.
  • Свариваемость. Возможность формирования сварных соединений с применением стандартных технологий.
  • Усадка – определяется соответствующим коэффициентом. При нагреве любой объект расширяется, после охлаждения – уменьшается. Так вот соотношение и определяет данное свойство. Кстати, далеко не всегда малое усадочное значение являет собой благо. К примеру, ртутные термометры работают именно за счет предельно большого коэффициента расширения.
  • Податливость режущим инструментам. С технологической точки зрения производственную ценность имеет только тот компонент, который можно сравнительно просто обработать или изготовить этот самый технический инструментарий.

Рассматриваемые направления характеризуют поведение уже готовых производственных изделий, товаров в процессе эксплуатации.

Таким образом, металлы – весьма распространенный материал, который активно используется в самых разных областях жизнедеятельности. Это обусловлено широкой вариативностью физических, химических, механических параметров продукции.

Читайте также:  Взаимодействие металлов с соляной кислотой формула

Физические свойства металлов

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

https://www.youtube.com/watch?v=4fQ_ZgSJ8UU\u0026t=48s

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства — те что проявляется в покое, механические — только под воздействием извне.

Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла «прочность» может быть результатом его грамотной технологической обработки (с этой целью нередко используют «закалку» и «старение»).

Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств.

Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью.

Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции.

Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя «шов» под нагрузкой, будет зависеть безопасность и надежность всей конструкции.

Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Что же это такое?

На сегодняшний день известно огромное количество различных металлов. Каждый из них обладает определенными характеристиками, отличающим его от других химических элементов или материалов. Однако существуют определенные признаки, которые однозначно говорят, что мы имеем дело с металлическим компонентом:

  1. Высокая теплопроводность и низкое электрическое сопротивление. Другие составы не обладают таким сочетанием. К примеру, графит проводит электричество, но не тепло.
  2. Присутствие блеска в области излома.
  3. Подверженность ковке.
  4. Кристаллы в структуре.

Напряжение

Напряжением называется возникновение внутренних сил с различными векторами направленности при внешнем воздействии. Эта величина может быть внутренняя или поверхностная. Является обязательным для расчета при изготовлении несущих стальных конструкций или элементов оборудования, подвергающихся постоянным нагрузкам.

Главным условием для измерения этого показателя является равномерная нагрузка, действующая в определенном направлении. При этом возникает напряженное состояние образца, который подвергается воздействию уравновешенных сил. Помимо этого, воздействие может быть односекторным или много векторным.

Существуют следующие виды напряжения материалов и их сплавов:

  • остаточное. Формируется уже после окончания воздействия внешних факторов. К ним относятся не только механические силы, но и быстрый нагрев или охлаждение образца;
  • временные. Возникают только при внешних нагрузках. После их прекращения изделие приобретает изначальные характеристики;
  • внутреннее. Чаще всего происходит в результате неравномерного нагрева заготовок.

Напряжение является отношением силы воздействия на площадь, на которую она прилагается.

Кроме прямого давления на поверхность может наблюдаться касательное. Расчет этого параметра требует более сложных методик.

Скольжение и дислокации

Процессы скольжения удалось подробнее исследовать на монокристаллах металлов, выращенных в лаборатории. При этом выяснилось не только то, что скольжение происходит в некоторых определенных направлениях и обычно по вполне определенным плоскостям, но и то, что монокристаллы деформируются при очень малых напряжениях.

Переход монокристаллов в состояние текучести начинается для алюминия при 1, а для железа – при 15–25 МПа. Теоретически же этот переход в обоих случаях должен происходить при напряжениях ок. 10 000 МПа. Такое расхождение между экспериментальными данными и теоретическими расчетами на протяжении многих лет оставалось важной проблемой.

В 1934 Тейлор, Полани и Орован предложили объяснение, основанное на представлении о дефектах кристаллической структуры. Они высказали предположение, что при скольжении сначала происходит смещение в какой-то точке атомной плоскости, которое затем распространяется по кристаллу. Граница между сдвинувшейся и несдвинувшейся областями (рис.

4) представляет собой линейный дефект кристаллической структуры, названный дислокацией (на рисунке эта линия уходит в кристалл перпендикулярно плоскости рисунка). Когда к кристаллу прикладывается напряжение сдвига, дислокация движется, вызывая скольжение по плоскости, в которой она находится.

После того как дислокации образовались, они очень легко движутся по кристаллу, чем и объясняется «мягкость» монокристаллов.

В кристаллах металлов обычно имеется множество дислокаций (общая длина дислокаций в одном кубическом сантиметре отожженного металлического кристалла может составлять более 10 км).

Но в 1952 научные сотрудники лабораторий корпорации «Белл телефон», испытывая на изгиб очень тонкие нитевидные кристаллы («усы») олова, обнаружили, к своему удивлению, что изгибная прочность таких кристаллов близка к теоретическому значению для совершенных кристаллов.

Позднее были обнаружены чрезвычайно прочные нитевидные кристаллы и многих других металлов. Как предполагают, столь высокая прочность обусловлена тем, что в таких кристаллах либо вообще нет дислокаций, либо имеется одна, идущая по всей длине кристалла.

Усталость

Усталостью называется разрушение конструкции под действием циклических нагрузок. Когда деталь изгибается то в одну, то в другую сторону, ее поверхности поочередно подвергаются то сжатию, то растяжению.

При достаточно большом числе циклов нагружения разрушение могут вызывать напряжения, значительно более низкие, чем те, при которых происходит разрушение в случае однократного нагружения.

Знакопеременные напряжения вызывают локализованные пластическую деформацию и деформационное упрочнение материала, в результате чего с течением времени возникают малые трещины. Концентрация напряжений вблизи концов таких трещин заставляет их расти.

Сначала трещины растут медленно, но по мере уменьшения поперечного сечения, на которое приходится нагрузка, напряжения у концов трещин увеличиваются. При этом трещины растут все быстрее и, наконец, мгновенно распространяются на все сечение детали. См. также

РАЗРУШЕНИЯ МЕХАНИЗМЫ.

Усталость, несомненно, является самой распространенной причиной выхода конструкций из строя в условиях эксплуатации. Особенно подвержены этому детали машин, работающие в условиях циклического нагружения. В авиастроении усталость оказывается очень важной проблемой из-за вибрации. Во избежание усталостного разрушения приходится часто проверять и заменять детали самолетов и вертолетов.

Твердость

Твердость материала – это его способность сопротивляться пластической деформации. Поскольку испытания на растяжение требуют дорогостоящего оборудования и больших затрат времени, часто прибегают к более простым испытаниям на твердость.

При испытаниях по методам Бринелля и Роквелла в поверхность металла при заданных нагрузке и скорости нагружения вдавливают «индентор» (наконечник, имеющий форму шара или пирамиды). Затем измеряют (часто это делается автоматически) размер отпечатка, и по нему определяют показатель (число) твердости. Чем меньше отпечаток, тем больше твердость.

Твердость и предел текучести – это в какой-то мере сравнимые характеристики: обычно при увеличении одной из них увеличивается и другая.

Может сложиться впечатление, что в металлических материалах всегда желательны максимальные предел текучести и твердость. На самом деле это не так, и не только по экономическим соображениям (процессы упрочнения требуют дополнительных затрат).

Во-первых, материалам необходимо придавать форму различных изделий, а это обычно осуществляется с применением процессов (прокатки, штамповки, прессования), в которых важную роль играет пластическая деформация. Даже при обработке на металлорежущем станке очень существенна пластическая деформация.

Если твердость материала слишком велика, то для придания ему нужной формы требуются слишком большие силы, вследствие чего режущие инструменты быстро изнашиваются. Такого рода трудности можно уменьшить, обрабатывая металлы при повышенной температуре, когда они становятся мягче.

Если же горячая обработка невозможна, то используется отжиг металла (медленные нагрев и охлаждение).

Во-вторых, по мере того как металлический материал становится тверже, он обычно теряет пластичность. Иначе говоря, материал становится хрупким, если его предел текучести столь велик, что пластическая деформация не происходит вплоть до тех напряжений, которые сразу же вызывают разрушение. Конструктору обычно приходится выбирать какие-то промежуточные уровни твердости и пластичности.

Вольфрам

Характеризуется высокой тугоплавкостью, также принадлежит к прочнейшим металлам на планете Земля. Являясь твёрдым элементом бело-серого цвета с характерным блеском, вольфрам высокопрочный, тугоплавкий, устойчив к воздействию кислотной и щелочной среды. Наделен ковкостью, при повышении температур W саморазогревается, а также растягивается в тоненькую нить, используемую в лампах.

Хром

Хром – металл бело-голубого цвета. Характеризуется высокой прочностью, твёрдостью, ярко выраженными магнитными свойствами, не подвергается водородному охрупчиванию, стойкий к влиянию кислотной и щелочной среды.

Его используют, создавая различные сплавы, а те в свою очередь востребованы для изготовления медоборудования.

Кроме того, Cr применяется при синтезе искусственных рубинов, соли хрома четырехвалентного используют для сохранения древесины и дубления кож.

Уран

Наиболее распространенный металл, отличается большой прочностью, в привычных условиях слабо радиоактивен. Обнаружение учёными урана считается открытием планетарного масштаба.

Наделен парамагнитными свойствами, гибкий, ковкий и относительно пластичный, благодаря таким качествам нашёл применение в разнообразных производственных сферах: является основой для ядерного оружия, соединения урана используются в производстве стекол, в качестве красителей.

Ссылка на основную публикацию
Adblock
detector