Взаимодействие с щелочными металлами фенолов

Содержание
  1. Классификация фенолов
  2. Строение фенолов
  3. Химические свойства фенолов
  4. 1.1. Взаимодействие с раствором щелочей
  5. 1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
  6. 2. Реакции фенола по бензольному кольцу
  7. 2.1. Галогенирование
  8. 2.2. Нитрование
  9. 3. Поликонденсация фенола с формальдегидом
  10. 4. Взаимодействие с хлоридом железа (III)
  11. 5. Гидрирование (восстановление) фенола
  12. Получение фенолов
  13. 2. Кумольный способ
  14. 3. Замещение сульфогруппы в бензол-сульфокислоте
  15. Химические свойства фенолов | Химия онлайн
  16. I. Реакции с участием гидроксильной группы
  17. II. Реакции, с участием бензольного кольца
  18. III. Реакция окисления
  19. IV. Качественная реакция! — обнаружение фенола
  20. Фенолы
  21. Номенклатура фенолов
  22. Получение фенолов
  23. Химические свойства фенолов
  24. Фенолы в химии — свойства, формула, получение, номенклатура и определение с примерами
  25. Строение фенола
  26. Физические свойства фенола
  27. Химические свойства фенола
  28. Получение и применение фенола
  29. 3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола
  30. Химические свойства спиртов
  31. Одноатомные спирты
  32. Реакции замещения
  33. Замещение атома водорода в гидроксильной группе
  34. Замещение гидроксильной группы
  35. Реакции элиминирования (отщепления)
  36. Дегидратация
  37. Дегидрирование спиртов
  38. Реакции окисления
  39. Горение
  40. Неполное окисление
  41. ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ
  42. Замещение атомов водорода гидроксильных групп
  43. Замещение гидроксильных групп
  44. Химические свойства фенолов
  45. Реакции с участием гидроксильной группы
  46. Кислотные свойства
  47. Реакции замещения в ароматическом ядре
  48. Галогенирование
  49. Нитрование
  50. Реакции присоединения
  • Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.
  • Гидроксисоединения делят на спирты и фенолы.
  • Строение, изомерия и гомологический ряд феноло
  • Химические свойства спиртов
  • Способы получения спиртов
  • Взаимодействие с щелочными металлами фенолов
Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.
Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Классификация фенолов

  • фенолы с одной группой ОН — содержат одну группу -ОН. Общая формула CnH2n-7OH или CnH2n-6O
  • фенолы с двумя группами ОН — содержат две группы ОН. Общая формула CnH2n-8(OH)2 или CnH2n-6O2.

Взаимодействие с щелочными металлами фенолов

Соединения, в которых группа ОН отделена от бензольного кольца углеродными атомами – это не фенолы, а ароматические спирты:

Строение фенолов

В фенолах одна из неподеленных электронных пар кислорода участвует в сопряжении с π–системой бензольного кольца, это является главной причиной отличия свойств фенола от спиртов.

Взаимодействие с щелочными металлами фенолов

Химические свойства фенолов

Сходство и отличие фенола и спиртов. Сходство: как фенол, так и спирты реагируют с щелочными металлами с выделением водорода.
Отличия:
  • фенол не реагирует с галогеноводородами: ОН- группа очень прочно связана с бензольным кольцом, её нельзя заместить;
  • фенол не вступает в реакцию этерификации, эфиры фенола получают косвенным путем;
  • фенол не вступает в реакции дегидратации.
  • фенол обладает более сильными кислотными свойствами и вступает в реакцию со щелочами.

1. Кислотные свойства фенолов

Фенолы являются более сильными кислотами, чем спирты и вода, т. к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается. 

Раствор фенола в воде называют «карболовой кислотой», он является слабым электролитом.

1.1. Взаимодействие с раствором щелочей

В отличие от спиртов, фенолы реагируют с гидроксидами щелочных и щелочноземельных металлов, образуя соли – феноляты.

Например, фенол реагирует с гидроксидом натрия с образованием фенолята натрия
  1. Видеоопыт взаимодействия фенола с гидроксидом натрия можно посмотреть здесь.
  2. Так как фенол – более слабая кислота, чем соляная и даже угольная, его можно получить из фенолята, вытесняя соляной или угольной кислотой:
  3. Взаимодействие с щелочными металлами фенолов

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Фенолы взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются феноляты. При взаимодействии с металлами фенолы ведут себя, как кислоты.

Например, фенол взаимодействует с натрием с образованием фенолята натрия и водорода.

Видеоопыт взаимодействия фенола с натрием можно посмотреть здесь.

2. Реакции фенола по бензольному кольцу

Наличие ОН-группы в бензольном кольце (ориентант первого рода) приводит к тому, что фенол гораздо легче бензола вступает в реакции замещения в ароматическом кольце.

2.1. Галогенирование

Фенол легко при комнатной температуре (без всякого катализатора) взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол).

Видеоопыт взаимодействия фенола с бромом можно посмотреть здесь.

2.2. Нитрование

Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара-нитрофенолов.

Например, при нитровании фенола избытком концентрированной HNO3 образуется 2,4,6-тринитрофенол  (пикриновая кислота):

3. Поликонденсация фенола с формальдегидом

С формальдегидом фенол образует фенолоформальдегидные смолы.

Взаимодействие с щелочными металлами фенолов

4. Взаимодействие с хлоридом железа (III)

При взаимодействии фенола с хлоридом железа (III) образуются комплексные соединения железа, которые окрашивают раствор в сине-фиолетовый цвет. Это качественная реакция на фенол.

Видеоопыт взаимодействия фенола с хлоридом железа (III) можно посмотреть здесь.

5. Гидрирование (восстановление) фенола

  • Присоединение водорода к ароматическому кольцу.
  • Продукт реакции – циклогексанол, вторичный циклический спирт.

Получение фенолов

  1. При взаимодействии обработке хлорбензола избытком щелочи при высокой температуре и давлении образуется водный раствор фенолята натрия.
  2. При пропускании углекислого газа (или другой более сильной кислоты) через раствор фенолята образуется фенол.

2. Кумольный способ

  • Фенол в промышленности получают из каталитическим окислением кумола.
  • Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:
  • Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:
  • Суммарное уравнение реакции:

3. Замещение сульфогруппы в бензол-сульфокислоте

  1. Бензол-сульфокислота реагирует с гидроксидом натрия с образованием фенолята натрия:
  2.  Получается фенолят натрия, из которого затем выделяют фенол:

Химические свойства фенолов | Химия онлайн

Химические свойства фенолов определяются наличием в молекуле гидроксильной группы и бензольного кольца.

IРеакции с участием гидроксильной группы

Фенолы являются более сильными кислотами, чем спирты и вода, т.к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается.

Кислотные свойства

Фенолы в водных растворах диссоциируются по кислотному типу: на фенолят-ионы и ионы водорода:Взаимодействие с щелочными металлами фенолов

Фенол диссоциирует обратимо, это слабая кислота. Однако его силы кислотных свойств достаточно, чтобы изменять окраску индикатора, имеющего в нейтральной среде фиолетовый цвет. В растворе фенола лакмус краснеет.

  • 1) Взаимодействие с активными металлами с образованием фенолятов (сходство со спиртами)
  • Видеоопыт «Взаимодействие фенола с металлическим натрием»
  • 2) Взаимодействие со щелочами с образованием фенолятов (отличие от спиртов)
  • Видеоопыт «Взаимодействие фенола с раствором щелочи»

Образующиеся в результате реакций феноляты легко разлагаются при действии кислот. Даже такая слабая кислота, как угольная, вытесняет фенол из фенолятов.

Следовательно, !Феноляты – соли слабой карболовой кислоты, разлагаются угольной кислотой:

По кислотным свойствам фенол превосходит этанол в 106 раз. При этом во столько же раз уступает уксусной кислоте. В отличие от карбоновых кислот, фенол не может вытеснить угольную кислоту из её солей

  1. C6H5-OH + NaHCO3 = реакция не идёт – прекрасно растворяясь в водных растворах щелочей, он фактически не растворяется в водном растворе гидрокарбоната натрия.
  2. Кислотные свойства фенола усиливаются под влиянием связанных с бензольным кольцом электроноакцепторных групп (NO2- , Br- )
  3. 2,4,6-тринитрофенол или пикриновая кислота сильнее угольной.
  4. 3) Образование сложных и простых эфиров

Как и спирты, фенолы могут образовывать простые и сложные эфиры. Фенолы не образуют сложные эфиры в реакциях с кислотами. Сложные эфиры образуются при взаимодействии фенола с ангидридами или хлорангидридами карбоновых кислот:Взаимодействие с щелочными металлами фенолов

Простые эфиры образуются при взаимодействии фенолятов с алкилгалогенидами:

Взаимодействие с щелочными металлами фенолов

II. Реакции, с участием бензольного кольца

  • Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы, но и в большей реакционной способности бензольного ядра. Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно, в орто-  и пара- положениях (+М-эффект ОН-группы):
  • Поэтому фенол значительно активнее бензола вступает в реакции электрофильного замещения в ароматическом кольце.
  • Реакции замещения
  • 1) Нитрование
  • Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто-  и пара- нитрофенолов:
  • Взаимодействие с щелочными металлами фенолов
  • При использовании концентрированной HNO3 образуется 2,4,6-тринитрофенол (пикриновая кислота):

У нее кислотные свойства выражены сильнее, чем у фенола, т.к. нитрогруппы оттягивают электронную плотность от бензольного кольца и делают связь О-Н еще более полярной.

  1. Пикриновая кислоты является взрывчатым веществом, в чистом виде представляет собой желтые кристаллы.
  2. 2) Галогенирование
  3. Фенол легко при комнатной температуре взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол!):
  4. Образуется белый осадок трибромфенола.
  5. Видеоопыт «Взаимодействие фенола с бромной водой»
  6. 3) Сульфирование
  7. Соотношение о- и п-изомеров определяется температурой реакции: при комнатной температуре в основном образуется о-фенолсульфокислота, при t=1000С – пара-изомер:Реакции присоединения
  8. 1) Гидрирование фенола
Читайте также:  Радиационная стойкость металлов это

Эта реакция идет с разрушением ароматического кольца. Продукт реакции циклический одноатомный спирт — циклогексиловый спирт (циклогексанол).

  • 2) Конденсация с альдегидами
  • При нагревании фенола с формальдегидом в присутствии кислотных или основных катализаторов происходит реакция поликонденсации и образуется фенолформальдегидная смола.
  • Данная реакция имеет большое практическое значение и используется при получении фенолформальдегидных смол.

III. Реакция окисления

Фенолы легко окисляются даже под действием кислорода воздуха. При стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет.

  1. 1) Горение (полное окисление)
  2. Фенолы, как и большинство органических веществ, сгорают до углекислого газа и воды.
  3. 2) Окисление хромовой смесью

При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона также образуется хинон:

IV. Качественная реакция! — обнаружение фенола

Для обнаружения фенолов используется качественная реакция с хлоридом железа (III). Одноатомные фенолы дают устойчивое сине-фиолетовое окрашивание, что связано с образованием комплексных соединений железа.

  • Видеоопыт «Качественная реакция на фенол»
  • Образование фиолетового окрашивания при добавлении раствора FeCl3 служит качественной реакцией на фенол:
  • Для фенолов реакции по связям С-О не характерны, поскольку атом кислорода прочно связан с атомом углерода бензольного кольца за счет участия своей неподеленной электронной пары в системе сопряжения.
  • Фенолы

Фенолы

Фенолы — кислородсодержащие ароматические соединения, в молекулах которых содержится одна или несколько гидроксильных групп (OH), присоединенных к бензольному кольцу.

Номенклатура фенолов

Нумерацию атомов углерода в молекуле фенола начинают в такой последовательности, чтобы заместители получили наименьшие номера (идут кратчайшим путем). В основе названия принято сохранять тривиальное название «фенол».

Взаимодействие с щелочными металлами фенолов

Напомню, что гидроксильная группа является ориентантом I порядка (орто-, пара-ориентант). Поэтому реакции галогенирования, нитрования протекают в орто- и пара-положениях.

Получение фенолов

  • Гидролиз галогенбензолов
  • При гидролизе галогенбензолов происходит обмен: гидроксогруппа встает на место атома галогена. Взаимодействие с щелочными металлами фенолов

  • Кумольный способ
  • Этим способом получают 95% всего производимого фенола. В ходе этой реакции кумол (изопропилбензол) подвергают окислению, в результате получается фенол и ацетон. Взаимодействие с щелочными металлами фенолов

Химические свойства фенолов

  • Кислотные свойства
  • Щелочные металлы (Li, Na, K) способны вытеснять водород из фенолов с образованием солей — фенолятов. В отличие от алифатических одноатомных спиртов, фенолы способны вступать в реакцию с щелочами (KOH, LiOH, NaOH) Взаимодействие с щелочными металлами фенолов

  • Галогенирование
  • Реакция фенола с бромной водой является качественной: в ходе нее выпадает белая взвесь — осадок трибромфенола. Взаимодействие с щелочными металлами фенолов

  • Реакции с кислотами
  • Реакция между фенолом и азотной кислотой происходит по типу замещения. В бензольном кольце появляется новый радикал — нитрогруппа. Важно учитывать, что OH группа фенола является ориентантом I порядка: замещение идет в орто-, пара-положении. Взаимодействие с щелочными металлами фенолов

  • Гидрирование
  • При гидрировании разрываются двойные связи бензольного кольца, образуется циклогексанол. Взаимодействие с щелочными металлами фенолов

  • Поликонденсация фенолов с формальдегидом
  • В промышленности получила широкое распространение реакция поликонденсации фенола с формальдегидом, приводящая к образованию смолообразных полимеров (фенолформальдегидные смолы) и воды. Взаимодействие с щелочными металлами фенолов

Фенолы в химии — свойства, формула, получение, номенклатура и определение с примерами

  • Содержание:
  • Фенолы:
  • К гидроксилпроизводным органическим соединениям, кроме спиртов, относятся фенолы.
  • Фенолами называют производные ароматических углеводородов, в молекулах которых один или несколько атомов водорода, непосредственно связанных с бензольным кольцом, замещены на гидроксильные группы.

Число гидроксильных групп в молекуле определяет атомность фенолов.

Они могут содержать до шести гидроксильных групп в молекуле. По числу гидроксильных групп фенолы, как и спирты, классифицируют как одно- и многоатомные фенолы.

В таблице 24 для ознакомления приведены формулы и названия некоторых фенолов различной атомности.

Взаимодействие с щелочными металлами фенолов

В данном курсе органической химии вы познакомитесь со строением и свойствами одного представителя класса — фенолом

Строение фенола

Фенол — простейший представитель класса. Группу атомов — называют фенильной группой. Структурная формула фенола в основном записывается без указания символов углерода и водорода в бензольном кольце.

Взаимодействие с щелочными металлами фенолов

Шаростержневая и масштабная модели молекулы фенола приведены на рисунке 52.

Физические свойства фенола

Фенол — бесцветное кристаллическое вещество с резким характерным запахом. Кристаллическое состояние фенола обусловлено наличием прочных водородных связей между его молекулами.

При обычной температуре фенол незначительно растворяется в воде, но хорошо раетворяетея в горячей воде.

Фенол очень ядовит, при попадании на кожу вызывает cильнейшие ожоги, поэтому работать е ним в школьном химичееком кабинете запрещено.

Химические свойства фенола

Химические свойства фенола обусловлены наличием в молекуле функциональной группы —ОН и бензольного кольца, которые взаимно влияют друг на друга.

В молекуле фенола бензольное кольцо влияет на гидроксильную группу, что проявляется в повышенной кислотности фенола по сравнению с насыщенными одноатомными спиртами.

Влияние гидроксильной группы на бензольное кольцо обусловливает более легкое замещение в нем атомов водорода на какой-либо заместитель у атомов углерода в положениях 2, 4, 6.

Рассмотрим последовательно химические реакции, протекающие с участием гидроксильной группы и бензольного кольца.

1) Диссоциация в водных растворах. Молекулы фенола диссоциируют в водных растворах по кислотному типу:

Фенол является слабой кислотой (иногда его называют карболовой кислотой), что отличает его от спиртов, которые практически не диссоциируют в водных растворах.

2) Взаимодействие со щелочными металлами. Наличие в молекуле фенола гидроксильной группы, непосредственно связанной с бензольным кольцом, обусловливает определенное сходство по химическим свойствам с одноатомными спиртами.

Если в расплавленный фенол поместить кусочек металлического натрия, то происходит реакция замещения атома водорода в гидроксильной группе. При этом образуется соединение, которое по номенклатуре ИЮПАК называют феноксид.

Используется и другое название — фенолят, допускаемое номенклатурой ИЮПАК. В реакции со щелочными металлами фенол проявляет кислотные свойства:

3) Взаимодействие со щелочами. Кислотные свойства у фенола, как вам известно, выражены сильнее, чем у одноатомных насыщенных спиртов. Поэтому, в отличие от них, фенол реагирует не только со щелочными металлами, но и с водными растворами щелочей с образованием феноксидов (фенолятов):

Кислотные свойства у фенола выражены слабее, чем у неорганических кислот, даже таких слабых, как угольная. Поэтому добавление к водному раствору фенолята натрия соли угольной кислоты (кислотные свойства фенола примерно в три тысячи раз слабее, чем угольной кислоты) приводит к образованию фенола. Образуется фенол и при добавлении к водному раствору фенолята сильных минеральных кислот:

4) Галогенирование. Реакции галогенирования, в частности бромирования, протекают с замещением атомов водорода в бензольном кольце.

В отличие от бензола для бромирования фенола не требуется катализатор, так как влияние гидроксильной группы значительно облегчает протекание реакций замещения в бензольном кольце.

При действии на фенол раствора брома в воде образуется белый осадок 2,4,6-трибромфенола (рис 54).

Эта реакция часто используется для качественного обнаружения фенола.

Фенол дает характерное фиолетовое окрашивание с водным раствором хлорида железа(III) вследствие образования комплексной соли железа. Эту реакцию также используют для обнаружения фенола и относят к цветной качественной реакции.

5) Нитрование. Фенол так же, как и бензол, взаимодействует е азотной кислотой, но нитрование фенола протекает легче, чем нитрование бензола. Реакция фенола с разбавленной азотной кислотой идет при комнатной температуре, и в результате образуется смесь изомеров нитрофенола:

2, 4, 5 — Тринитрофенол (пикриновую кислоту)  получают из фенола под действием сначала концентрированных серной, а затем азотной кислот. Наличие в молекуле пикриновой кислоты трех заместителей — усиливает ее кислотные свойства. Она является сильной кислотой. Пикриновая кислота — взрывоопасное вещество, ее соли применяются в качестве взрывчатых веществ.

  1. Фенолами называют производные ароматических углеводородов, в молекулах которых один или несколько атомов водорода, непосредственно связанных с бензольным кольцом, замещены на гидроксильные группы.
  2. Фенол — простейший одноатомный фенол, химические свойства которого определяются наличием в молекуле как гидроксильной группы, так и бензольного кольца, которые оказывают друг на друга взаимное влияние, что обусловливает высокую активность фенола в реакциях замещения в бензольном кольце и большую кислотность по сравнению со спиртами.
  3. Для фенола характерны реакции гидроксильной группы (со щелочными металлами, щелочами) и бензольного кольца (галогенирование, нитрование).  

Получение и применение фенола

Получение: Одним из основных промышленных методов получения фенола является кумольный метод. Он был разработан в 40-е гг. XX в. в Советском Союзе Р. Ю. Удрисом, Б. Д. Кружаловым, П. С. Сергеевым, М. С. Немцовым и до наших дней не утратил своей эффективности. Для получения фенола используются экономически выгодные исходные вещества — бензол и пропей.

  • Упрощенно синтез фенола можно представить так. Сначала в реакции бензола с пропеном синтезируют изопропилбензол (кумол):
  • Затем кумол окисляют, продукт окисления кумола разлагают разбавленной серной кислотой и получают при этом фенол и ацетон важнейшие в производственном отношении продукты:
  • Схема получения из кумола фенола приведена для ознакомления и не требует запоминания.

Ранее фенол выделяли только из каменноугольной смолы, образующейся как побочный продукт коксохимического производства.

Каменноугольную смолу обрабатывали щелочами, а, как вам известно, водные растворы щелочей взаимодействуют с фенолом с образованием фенолятов. Затем феноляты обрабатывали минеральными кислотами и получали фенол.

Схематически процесс экстрагирования фенола из каменноугольной смолы можно представить так:

  1. каменноугольная смола
  2. Фенол можно получить, используя в качестве исходного вещества бензол. При хлорировании бензола сначала получают хлорбензол, затем хлорбензол под действием водного раствора гидроксида натрия дает фенолят натрия, который в реакции с минеральными кислотами превращается в фенол:

Этот способ получения фенола в настоящее время практически не используется как технически устаревший и экономически нецелесообразный. Однако знакомство с ним представляет интерес как пример генетической связи между углеводородами, галогенпроизводными и гидроксилпроизводными (фенолами).

Применение: Фенол и продукты, получаемые на его основе, находят широкое применение (рис. 55). Практически половина производимого фенола расходуется на синтез фенолформальдегидных смол.

Полимеры на основе этих смол применяются для изготовления лаков и красок, пластмассовых изделий, устойчивых к действию кислот и щелочей, нагреванию. Из пластмасс на основе фенолформальдегидных смол изготовляют важные детали электро- и радиоприборов, аппаратуры, используемой для работы при высокой температуре и в агрессивных средах.

Клеи, полученные на основе фенолформальдегидных смол, надежно соединяют детали, изготовленные из самых различных веществ, сохраняя высокую прочность соединения.

Фенол служит исходным веществом для получения многих лекарственных препаратов, например аспирина, красителей, пестицидов, антисептиков. Он используется в генной инженерии и молекулярной биологии в качестве средства для очистки и выделения молекул ДНК.

  • Тринитрофенол (пикриновая кислота) находит применение в производстве взрывчатых веществ.
  • Гидрохинон применяется в фотографии в качестве проявителя, так как он очень легко окисляется.
  • Пирокатехин используется для получения адреналина — гормона, вырабатываемого надпочечниками.
  • Резорцин применяется наружно как антисептик при кожных заболеваниях в виде водных и спиртовых растворов; в производстве красителей, стабилизаторов и пластификаторов полимеров.

Фенол и его производные — ядовитые вещества, очень опасные для человека, животных и растительных организмов. Вдыхание паров фенола может привести к ожогам дыхательных путей и последующему отеку легких.

При попадании фенола на кожу образуются химические ожоги.

Фенол не теряет летучих свойств даже в составе пластмасс, вот поэтому во многих странах мира запрещено производство предметов быта и детских игрушек с использованием фенопластов, представляющих опасность для здоровья людей.

  1. В составе отходов производства могут содержаться чрезвычайно ядовитые вещества, например диоксин:
  2. Чтобы предотвратить их попадание в окружающую среду, применяются различные физические и химические методы очистки.
  3. Фенол в основном получают в процессе органического синтеза кумольным методом.
  4. Фенол и его производные применяются в качестве исходных веществ для производства синтетических смол и пластмасс, синтеза красителей, лекарств и многих других ценных продуктов.

3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола

  • В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.
  • Спиртами называют соединения, в которых гидроксильная группа соединена с углеводородным радикалом, но не присоединена непосредственно к ароматическому ядру, если таковой имеется в структуре радикала.
  • Примеры спиртов:

Если в структуре углеводородного радикала содержится ароматическое ядро и гидроксильная группа, при том соединена непосредственно с ароматическим ядром, такие соединения называют фенолами.

Примеры фенолов:

Почему же фенолы выделяют в отдельный от спиртов класс? Ведь, например, формулы

очень похожи и создают впечатление веществ одного класса органических соединений.

Однако непосредственное соединение гидроксильной группы с ароматическим ядром существенно влияет на свойства соединения, поскольку сопряженная система π-связей ароматического ядра сопряжена также и с одной из неподеленных электронных пар атома кислорода. Из-за этого в фенолах связь О-Н более полярна по сравнению со спиртами, что существенно повышает подвижность атома водорода в гидроксильной группе. Другими словами, у фенолов значительно ярче, чем у спиртов выражены кислотные свойства.

Химические свойства спиртов

Одноатомные спирты

Реакции замещения

Замещение атома водорода в гидроксильной группе

1) Спирты реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от защитной пленки Al2O3), при этом образуются алкоголяты металлов и выделяется водород:

  1. Образование алкоголятов возможно только при использовании спиртов, не содержащих растворенной в них воды, так как в присутствии воды алкоголяты легко гидролизуются:
  2. CH3OK + Н2О = СН3ОН + KOH
  3. 2) Реакция этерификации
  4. Реакцией этерификации называют взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами, приводящее к образованию сложных эфиров.
  5. Такого типа реакции являются обратимыми, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию желательно проводить при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего агента:

Замещение гидроксильной группы

1) При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода:

2) При пропускании смеси паров спирта с аммиаком через нагретые оксиды некоторых металлов (чаще всего Al2O3) могут быть получены первичные, вторичные или третичные амины:

Тип амина (первичный, вторичный, третичный) будет в некоторой степени зависеть от соотношения исходного спирта и аммиака.

Реакции элиминирования (отщепления)

Дегидратация

  • Дегидратация, фактически подразумевающая отщепление молекул воды, в случае спиртов различается на межмолекулярную дегидратацию и внутримолекулярную дегидратацию.
  • При межмолекулярной дегидратации спиртов одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.
  • В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

Внутримолекулярная дегидратация спиртов протекает таким образом, что одна молекула воды отщепляется от одной молекулы спирта. Данный тип дегидратации требует несколько более жестких условий проведения, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При дегидратации метанола возможно образование только простого эфира (CH3-O-CH3).

Нужно четко усвоить тот факт, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление  воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

Дегидрирование спиртов

  1. а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:
  2. б) В случае вторичных спиртов аналогичные условия приведут у образованию кетонов:

в) Третичные спирты в аналогичную реакцию не вступают, т.е. дегидрированию не подвергаются.

Реакции окисления

Горение

Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

2СН3-ОН + 3O2 = 2CO2 + 4H2O + Q

Неполное окисление

Неполное окисление первичных спиртов может приводить к образованию альдегидов и карбоновых кислот.

В случае неполного окисления вторичных спиртов возможно образование только кетонов.

Неполное окисление спиртов возможно при действии на них различных окислителей, например, таких, как кислород воздуха в присутствии катализаторов (металлическая медь), перманганат калия, дихромат калия и т.д.

При этом из первичных спиртов могут быть получены альдегиды. Как можно заметить, окисление спиртов до альдегидов, по сути, приводит к тем же органическим продуктам, что и дегидрирование:

Следует отметить, что при использовании таких окислителей, как перманганат калия и дихромат калия в кислой среде возможно более глубокое окисление спиртов, а именно до карбоновых кислот. В частности, это проявляется при использовании избытка окислителя при нагревании. Вторичные спирты могут в этих условиях окислиться только до кетонов.

ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ

Замещение атомов водорода гидроксильных групп

Многоатомные спирты так же, как и одноатомные реагируют  со щелочными, щелочноземельными металлами и алюминием (очищенным от пленки Al2O3); при этом может заместиться разное число атомов водорода гидроксильных групп в молекуле спирта:

2. Поскольку в молекулах многоатомных спиртов содержится несколько гидроксильных групп, они оказывают влияние друг на друга за счет отрицательного индуктивного эффекта. В частности, это приводит к ослаблению связи О-Н и повышению кислотных свойств гидроксильных групп.

Большая кислотность многоатомных спиртов проявляется в том, что многоатомные спирты, в отличие от одноатомных, реагируют с некоторым гидроксидами тяжелых металлов. Например, нужно запомнить тот факт, что свежеосажденный гидроксид меди реагирует с многоатомными спиртами с образованием ярко-синего раствора комплексного соединения.

Так, взаимодействие глицерина со свежеосажденными гидроксидом меди приводит к образованию ярко-синего раствора глицерата меди:

Данная реакция является качественной на многоатомные спирты. Для сдачи ЕГЭ достаточно знать признаки этой реакции, а само уравнение взаимодействия уметь записывать необязательно.

3. Так же, как и одноатомные спирты, многоатомные могут вступать в реакцию этерификации, т.е. реагируют с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров.

Данная реакция катализируется сильными неорганическими кислотами и является обратимой.

В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье:

  • Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры  называют жирами.
  • В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении:

Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Кроме того, 1%-ный раствор данного вещества в спирте обладает мощным сосудорасширяющим действием, что используется при медицинских показаниях для предотвращения приступа инсульта или инфаркта.

Замещение гидроксильных групп

Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.

Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:

Химические свойства фенолов

Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.

Реакции с участием гидроксильной группы

Кислотные свойства

  1. Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы:
  2. Большая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами:
  3. Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот – угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная,  кислоту:
  4. Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов:

3) Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами:

Реакции замещения в ароматическом ядре

Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара-положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом.

Галогенирование

Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола:

Нитрование

При действии на фенол смеси концентрированных азотной и серной кислот (нитрующей смеси) образуется 2,4,6-тринитрофенол – кристаллическое взрывчатое вещество желтого цвета:

Реакции присоединения

Поскольку фенолы являются ненасыщенными соединениями, возможно их гидрирование в присутствии катализаторов до соответствующих спиртов:

Понравилась статья? Поделиться с друзьями:
Станок