- Что еще почитать по теме?
- Как выплавлялась сталь
- Дорога к веку железа
- Стальная революция
- Между Бессемером и Мартеном
- Эра Мартена
- Первые металлурги
- Как добывали первые металлы?
- История развития металлургии
- История металла, в каких годах был обнаружен
- Металлы древности
- Золото
- медь
- Серебро
- Свинец
- Олово
- Железо
- Ртуть
- Основные металлы и когда они были приблизительно открыты
- Другие металлы
- Трансурановые элементы
- Металлический забавный факт
- Вы хотите сдать металлолом в Симферополе?
А потом люди обнаружили, что из некоторых руд, смешав их с углем и предприняв некоторые хитрости, можно получить железо, из которого можно было выковать прочные железные мечи. А имея хорошее оружие, можно было завоевать соседей и стать очень богатыми.
Первым народом, которому удалось открыть способ получения руды, а затем из этой руды — железа, были хетты. Они засекретили способ получения железа, понаделали себе оружия и создали свою державу. Их оружие было знаменито у соседей — даже фараон Тутанхамон не удержался и приобрел у них кинжал из железа (правда, это произошло раньше — еще в эпоху самородного метеоритного железа).
Хеттская колесница Источник
Увы, секретность удержать не удалось. И способ производства руды, и способ производства железа стали доступны соседям. Государство Хеттов пало, а технология стала распространяться в мире.
Секрет получения железа — в том, что для этого необходима очень высокая температура, более 1000 градусов, недостижимая на открытом огне.
Для получения из руды железа смесь руды и угля помещали в печь, а после розжига начинали мехами нагонять в нижнюю часть печи воздух.
От этого горение усиливалось, температура повышалась, в руде начинался процесс восстановления железа из окиси, а после выгорания угля на дне печи образовывалась крица железа, комок «почти железа», пористая масса из железа, шлаков и остатков угля.
Эту крицу немедленно проковывали, пока она еще очень горячая. Механическим воздействием от железа отделяли шлак и уголь. Так получалась заготовка для будущих мечей, топоров, броней, железного инструмента.
Железная крица Источник
- В этом процессе очень многое зависело от умения кузнеца, от его мастерства и знаний, в каких пропорциях смешивать именно эту руду и уголь, сколько времени вести плавку и когда ее заканчивать, знать течение процесса, не имея возможности заглянуть внутрь.
- Дело в том, что по содержанию углерода в железе различают:
1. Собственно железо, когда в нем углерода менее 0.3%, этот сплав относительно мягок, пластичен и тугоплавок (очень хороший материал для гвоздей).
2. Когда в сплаве от 0.3% до 2.1%, его называют сталью, она пластична и тверда. Сталь можно закалить, сделав очень твердой и немного более хрупкой.
3. Когда углерода слишком много, выходит чугун. Его в старое время называли «свиным железом», т.к. он был хрупок и не годился для последующей кузнечной обработки, удар молота его бы просто раздробил, посему на долгое время чугун считался браком в работе кузнеца.
Сыродутная печь Источник
Вначале сыродутные печи были одноразовые, их ломали, чтобы вынуть крицу. Потом в печи стали выламывать кусок в основании нижней ее части, чтобы вынуть крицу, а саму печь после охлаждения через отверстие снова заполняли смесью руды и угля, отверстие заделывали — и печь снова была готова к работе.
А железо после этого раскаляли в горне и ковали из него нужные «хитрые изделия железа», как старик Гомер написал.
Опытным путем было установлено, что если железную заготовку, скажем, для меча, долго прокаливать в угле, то простое железо становится сталью, становится прочнее и поддается закалке. Стальной закаленный меч намного лучше даже просто железного меча. Процесс назвали цементацией железа.
Опять-таки опытным путем кузнецы узнали, что если сложить вместе несколько тонких полосок простого железа и стали, ковкой сварить их вместе, а потом прокованную полосу раскалить, проковать, чтобы стала уже — сложить вдвое, и снова проковать… И так много-много раз — в результате выходил булат.
Сабля из булатной стали Источник
Тот самый булат, который, не зная секрета, пытались повторить химическим путем, добавляя в железо то или иное вещество.
Прошла тысяча лет, а сыродутные печи изменились совсем чуть-чуть. Прошла еще тысяча лет, а изменения все не спешили появиться. Большой прогресс был сделан в ковке, а плавка железа изменилась очень мало. Казалось, люди довольны тем, что они имеют. Время шло, изменений не было.
Только в конце второго тысячелетия нашей эры в технологии плавления железа наметился серьезный прогресс. Накапливался он постепенно и незаметно.
Сначала домницы стали побольше и повыше, с более высокой трубой для более сильной тяги. Затем у них появились дверцы для того, чтобы, не разрушая печь, можно было вынуть крицу. Печи становились все больше, огонь все жарче, и все больше на выходе оказывалось вместо железа или стали — хрупкого чугуна. Чугун шел на ядра для пушек, на что-то еще, но людям нужна была сталь!
В конце концов, появилась технология переделки чугуна в сталь. В специальных устройствах через жидкий чугун прокачивали воздух. Чугун кипел, чугун горел — и в этом процессе из железа выгорал углерод, а чугун становился сталью.
Царь-пушка в Кремле Depositphotos
Как только появился способ переделать чугун в сталь, так выплавка железа стала производством чугуна. В огромных доменных печах шел непрерывный процесс плавки чугуна, в печь закидывали уголь и руду, внутри бушевало пламя, руда плавилась и становилась чугуном.
Время от времени внизу открывали отверстие — и жидкий чугун вытекал в огромный ковш, ковш перевозили в конвертер, где через него начинали пропускать воздух.
Через некоторое время полученную сталь сливали из печи, превращая ее в заготовки для дальнейшей обработки, а в домне уже был готов новый чугун для превращения в сталь.
Процесс стал непрерывным. Производство стали выросло во много раз. Но и потребление подешевевшей стали тоже возросло. Лишней стали в мире не появилось, все оказалось к месту.
Но и сталь, как оказалось, тоже можно сильно улучшить. Достаточно ее легировать…
Что еще почитать по теме?
Сколько металла должно быть в руде?Сибай. Где находится второй по размерам карьер мира?Что такое каслинское литье?
Как выплавлялась сталь
17 октября 1855 г. английский изобретатель Генри Бессемер запатентовал новый процесс изготовления стали. Политех решил проследить историю развития металлургии от глиняных кузнечных горнов до мартеновских печей с магнезитовой футеровкой.
Цивилизация — это металл, начиная с первых неловких попыток обработки самородных металлов, и до ультрасовременных сложных сплавов. Недаром историки разделяют развитие человечества на этапы, начиная с каменного века: медный, бронзовый и, наконец, железный.
Самородные металлы встречаются довольно редко, поэтому начиная с медного века люди учились выплавлять их из руды. Хотя первое знакомство человека с железом сегодня относят еще к 3–4 тысячелетию до н.э., считается, что «настоящий» железный век наступил лишь около VIII в. до н.э. Во всяком случае, в 1200 г. до н.э. древние греки воевали с троянцами еще медным и бронзовым оружием.
Получать медь и бронзу (сплав меди с оловом) не особенно сложно. Во-первых, самородная медь распространена достаточно широко. Во-вторых, температура ее плавления — около 1350 °С, и в простейшем случае достаточно насыпать руду в каменный или глиняный тигель, и поставить его в кузнечный горн. Вскоре можно будет отделить шлак от вполне чистого металла.
Дорога к веку железа
Температура плавления железа — уже почти 1540 °С. Его получение потребовало печей более совершенной конструкции и более горячих.
Чтобы повысить разогрев, воздух в них нагнетали мехами, а сами глиняные печи часто делали «глухими»: чтобы извлечь готовый металл и шлаки, печь приходилось разбирать, а для новой плавки складывать заново.
Вдобавок, поддерживать высокую температуру удавалось только в небольших по размерам объемах. Производительность такой металлургии была невысока, а выплавленное железо исключительно дорогим.
Полудоменная печь XV века с водяным дутьем (Штирия)
Широко доступным железо стало только в XIV–XV вв., когда появились доменные печи, выплавка в которых может происходить непрерывно — разбирать ее нет нужды. Железная руда, чередуясь с топливом, засыпается в доменную печь сверху, а снизу подается разогретый воздух и извлекается шлак, а также чугун, сплав железа со сравнительно высоким количеством углерода.
Первым топливом доменных печей стал уголь — сперва древесный, потом каменный, — а с XVIII в. его вытесняет кокс, продукт нагревания угля без доступа кислорода.
Температура в доменной печи так высока, что складывать ее потребовалось из кирпичей, сделанных лишь из особых, огнеупорных сортов глины.
В те годы самой стойкой показала себя белая глина (каолин), состоящая, в основном, из водных силикатов алюминия.
Глину обжигали, чтобы удалить воду и спечь, получив шамот, затем его перемалывали и после добавления дополнительных ингредиентов формовали в кирпичи.
Стоит заметить, что кузнецы Средних веков относились к чугуну пренебрежительно: при всей своей высокой твердости, он исключительно хрупок и обычной ковке молотом не поддавался.
Однако после того, как из него стали лить ядра, пушки, а затем рельсы и мосты, именно он стал основным для черной металлургии.
«Доменно–каолинная» технология просуществовала несколько столетий, вплоть до начала XIX в.
Стальная революция
Следующий прорыв связан с созданием технологий получения из чугуна еще более удобных сплавов железа — сталей.
Для этого требуется всего лишь снизить содержание углерода, однако долгое время добиться этого можно было лишь очень долгим и сложным способом, включавшим дополнительную проковку.
Сталь не была массовой до тех пор, пока в 1780-х не появился новый революционный метод пудлингования.
В пудлинговой печи контакта чугуна с топливом не происходило. Уголь сгорал в очаге, тепло от которого направлялось к рабочему пространству, превращая загруженный чугун в тестообразную массу.
При этом стены печи покрывали слоем глины, смешанной с оксидами железа, которые помогали углероду в расплавленном чугуне окисляться. При огромной температуре и за счет особого покрытия углерод и примеси выгорали, и в расплаве появлялись кристаллы достаточно чистого железа.
Собрав их в комок, рабочие вытаскивали его из печи и отправляли на проковку.
Вскоре для пудлинговых и доменных печей было найдено и новое огнеупорное покрытие, способное выдерживать температуры, намного выше, чем шамот.
Кремнезем — диоксид кремния — при нагревании спекается в огнеупорную стекловидную массу.
Уже в 1820-х в Англии, где вовсю бушевала промышленная революция, была разработана технология получения огнеупорных кирпичей из богатой кремнеземом динасовой глины.
Вскоре доменные и пудлинговые печи начинают работу во всех развитых странах: с 1819 г. — во Франции, с 1835 г. — в Австрии, а в 1837 г. и в России открылся первый пудлинговый Камско-Воткинский завод.
Металлургия стала обеспечивать возрастающие потребности человечества в «черном» металле. Континенты рассекли железные дороги, в моря вышли железные пароходы, артиллерия вооружилась внушительными пушками.
Между Бессемером и Мартеном
Потребности цивилизации в стали все росли, и технологии быстро совершенствовались. В середине XIX в.
Генри Бессемер нашел, что «обезуглероживание» чугуна станет более эффективным, если сквозь ванну с расплавом продувать воздух.
Однако бессемеровской переделке поддавался далеко не любой чугун: если он содержал фосфор, то при нагревании до красного каления резко терял всю свою прочность.
Изобретатель Генри Бессемер
Железные руды с низким содержанием фосфора достаточно редки, удалить же его из чугуна в печи не позволяла простая химия: шамотные и динасовые кирпичи создают в ней кислую среду, в которой нужные реакции не протекают.
Решение нашлось лишь в 1877 г.
, когда Сидни Томас и Перси Джилькрист получили патент на новую технологию переделки чугуна — с добавлением связывающей фосфор извести и с облицовкой печи из материалов, содержащих щелочные оксиды магния и кальция.
В самой Англии к новому процессу отнеслись с недоверием. Вплоть до начала ХХ в.
металл, изготовленный по этой технологии, ценился не слишком высоко, и даже фирма Lloyd’s брала повышенную плату за страхование судов, изготовленных из «томасовского» металла.
Такой консерватизм обошелся англичанам дорого: к концу XIX в. Германия, вооружившись методом Томаса, стала металлургическим и промышленным лидером Европы.
Распространение томасовского процесса привело к тому, что с 1880-х внутренние поверхности сталеплавильных печей все чаще отделывали щелочными (основными) огнеупорами. Изготовленные, например, из минерала магнезита, они позволили поднять температуру до 1700 °С и открыли дорогу новой металлургической технологии — пришло время мартеновских печей.
Эра Мартена
Идею о превращении мягкого железа в сталь погружением его в расплав чугуна еще в 1722 г. высказал Рене Реомюр (тот самый, который изобрел спиртовой термометр и предложил свою температурную шкалу). Однако температура для этого требовалась настолько высокая, что реализовать процесс было невозможно вплоть до появления печей нового типа.
Первый шаг к ним сделал Фридрих Сименс, придумавший подавать в печь воздух, предварительно прошедший через систему труб и как следует прогретый. А завершил работу Пьер Мартен, который в 1860-х запатентовал процесс, позволявший расплавлять чугун, загружать его металлоломом или рудой — и получать сталь нужного качества и состава.
Первые мартеновские печи облицовывались по-старинке, денисовскими кирпичами, но вскоре их вытеснили более выносливые основные огнеупоры, получаемые из обожженного магнезита.
Помимо прочего, они позволяли работать с большим спектром железных руд — и в 1880 г.
на территории современной Польши была получена первая сталь, выплавленная в мартеновской печи с использованием магнезитовых огнеупоров.
В следующие десятилетия весь мир принялся осваивать внезапно ставший таким важным магнезит. Его добыча и производство из него огнеупорных изделий одно за другим начинаются в Австро-Венгрии, Германии, США, а около 1896 г. и на Урале было открыто огромное Саткинское месторождение.
С началом нового века здесь открывается новый магнезитовый завод — впоследствии одно из передовых предприятий советской промышленности, а сегодня — ключевая часть компании «Магнезит», ведущего поставщика огнеупорных изделий для всей российской металлургии.
Впрочем, это уже совсем другая история.
Первые металлурги
Около 9 тыс. лет назад люди открыли для себя металлы. Древнейшие свидетельства этого найдены на востоке Малой Азии. Люди, населявшие эту территорию, научились обрабатывать самородную медь. Медь – мягкий податливый металл, его можно ковать холодным. Именно так из неё делали бусы и булавки.
Чуть позже появились украшения из другого металла – золота. Со временем из меди начали делать орудия труда: первыми стали медные сверла. Оказалось, что у меди немало преимуществ по сравнению с камнем: она не такая хрупкая, ей можно придать любую форму, а если что-то не получилось, орудие можно перековать или заточить по-новому. Однако самородки меди и золота встречаются редко.
Бронзовое зеркало. Древний Египет. Каирский музей
Настоящая металлургия появилась, когда люди научились выплавлять медь и золото из руды. Для этого сначала использовали гончарные печи, температура в которых достигала 800 градусов Цельсия: ее было достаточно, чтобы расплавить медь, содержавшую примесь серы.
Затем металл заливали в каменные формы. Но у медных орудий был серьёзный недостаток: они легко гнулись. Золото было гораздо твёрже, но слишком редко встречалось и слишком дорого стоило, чтобы делать из него лезвия и топоры.
Проблему удалось решить, когда к меди стали добавлять немного олова. Так получили сплав бронзы. Он был не только прочнее чистой меди, но и легче поддавался отливке. Из бронзы отливали те части орудий и оружия, которые должны были сочетать твёрдость и остроту лезвия.
Из неё же делали вазы, украшения, статуэтки, детали мебели.
Независимо друг от друга центры обработки меди, золота и бронзы появились и в других, как правило горных, районах Азии, Европы и Центральной Америки.
Оружие и украшения железного века
Следующим шагом в развитии металлургии стало освоение железа. Первыми кузнецами были древние хетты, жившие на территории современной Турции 3,5 тыс. лет назад. Железо разогревали в печах, но их температуры не хватало для того, чтобы металл расплавился.
Получалась твёрдая масса – крица, состоящая из железа и шлака. Её разогревали докрасна и ковали тяжёлыми молотами, пока шлак не отделится от металла, а изделие не примет нужную форму.
Для прочности к железу примешивали древесный уголь, а раскаленные инструменты и оружие из железа закаляли в ледяной воде.
Примерно 2,5 тыс. лет назад китайские мастера научились строить плавильные печи с высокой температурой. В них они впервые получили чугун.
Преимущества железа перед другими металлами были очевидны. Железная руда встречается гораздо чаще, чем медная. Предметы из железа очень прочны и долговечны, а их стоимость существенно ниже, чем медных и бронзовых. Это привело к быстрому переходу от бронзового века к железному.
Металлические орудия труда древних людей
Распространение металлических орудий труда привело к дальнейшему прогрессу земледелия, способствовало развитию ремёсел и торговли, усилению неравенства, обогащению знати. Появление оружия из бронзы и железа превратило столкновения из-за земли и скота в ожесточённые войны.
Развитие общества не только ускорилось, но и стало неравномерным. Группы людей, расселившиеся по огромным пространствам суши, оказались в несхожих природных условиях.
На самых благоприятных территориях Ближнего Востока, Северной Африки и Юго-Восточной Азии переход от первобытности и цивилизации начался в энеолите – медно-каменном веке. В других районах Земли это стало возможно только после освоения бронзовых, а в большинстве случаев – железных орудий труда.
Сами сроки перехода от камня к металлу и от бронзы к железу на разных территориях не совпадали и могли расходиться на тысячелетия.
Поделиться ссылкой
Как добывали первые металлы?
История использования металлов человеком, таких как: медь, золото, свинец, олово насчитывает тысячи лет. Первые небольшие их партии, вероятно, были выделены из метеоритов. Затем люди научились добывать металлы с поверхности земли. А в эпоху Римской Империи уже был освоена технология горной добычи.
История добычи и использования первых металлов человеком.
Медь или Cuprum (в таблице химических элементов обозначается Cu) – один из первых металлов, который начали использовать люди. Упоминания о нем датируются 9 веком до нашей эры. Из Cu изготавливали инструменты, орудия труда и оружие.
Месопотамские племена делали из меди украшения, так как не располагали металлургическими технологиями. Египтяне применяли этот цветной металл в медицинских целях – обеззараживали воду, заживляли раны. Индейцы пользовались медными хирургическими инструментами.
Мягкий свинец использовался доисторическими людьми в производстве сосудов для транспортировки жидкостей, а также украшений. Римляне изготавливали из него трубы для акведуков. Первые упоминания о металле датируются серединой 6 века до нашей эры. Пользовался популярностью из-за легкости добычи и простоты обработки.
Появление бронзы (сплав меди и олова) бронза ознаменовало новый виток развития оружейных технологий. Начала активно использоваться технология литья. А с помощью ковки сплав делали прочнее.
Золото или Aurum (обозначается Au) в природе встречается в виде самородков (слитков разного размера). Люди обратили на этот металл внимание, благодаря его необычному цвету. Еще одно его преимущество – пластичность. Поэтому из Aurum изготавливали ювелирные украшения, чеканили монеты.
Олово или Stannum (обозначается Sn) было редким металлом. Люди научились его добывать из оловянного камня в 6 веке до нашей эры. Выплавлялся с использованием древесного угля, создания в печи дефицита кислорода. Но получить Sn относительно в чистом виде удалось только в 7 веке нашей эры. Металл ценился из-за высокой твердости.
- Существует историческая гипотеза, что «Бронзового века», на самом деле, не было. Обосновывается это тем, что оловянный камень или касситерит залегает достаточно глубоко, а крупные его месторождения находятся в отдаленных, труднодоступных местах, таких как:
• Забайкалье;
• Якутия;
• Таиланд;
• Боливия; - • Кавказ.
Европейские месторождения олова также залегают на большой глубине. Ученые считают, что древние люди не располагали технологиями для добычи олова в промышленных масштабах. Им приходилось довольствоваться тем, что находили на поверхности.
Сегодня выплавляется огромное количество меди, золота, свинца, олова. Эти металлы широко используются в различных отраслях: машино и приборостроительной, химической, ювелирной, космической, а также в медицине, строительстве. Без них невозможно представить дальнейшее развитие цивилизации.
История развития металлургии
Ранние этапы развития металлургии Несмотря на названия периодов эволюции первобытного общества, металлургия начинает свое развитие еще в каменном веке. Самые древние потуги человека в металлообработке датируются историками шестым столетием до нашей эры.
Соответствующие археологические находки, свидетельствующие об этом, были обнаружены на Пиренейском полуострове, на Балканах (в Сербии и Болгарии), в британском Стоунхендже. Правда, возраст всех этих находок установить бывает не всегда легко.
Разумеется, свои первые опыты в металлургии древний человек проводил с легкоплавкими металлами: серебром, оловом, а также железом метеоритного происхождения. Обработка металлов с более высокой температурой плавки была просто невозможной в те далекие времена. Так, в III тысячелетии до н.э.
египтяне научились изготавливать довольно неплохое оружие из метеоритного железа, которое ценилось далеко за пределами Древнего Египта. Эти прочные клинки очень скоро нарекли «небесными кинжалами».
Около 5500 лет назад человечество вступает в новую эпоху своего развития – Бронзовый век. Этот переход ознаменовался несколькими важными достижениями. Во-первых, человек научился извлекать олово и медь из горных пород. Во-вторых, ему удалось получить абсолютно новый сплав – бронзу. Однако дальнейшее развитие металлургии нуждалось в более технологичных и более сложных процессах, а потому – затормозилось на более чем два тысячелетия.
Принято считать, что технология получения железа из рудного тела впервые открылась хеттам – народу, обитавшему в Малой Азии и неоднократно упомянутому в Библии. Случилось это примерно в 1200 году до нашей эры. Именно с этой даты и начинается Железный век в развитии общества.
Следы развития черной металлургии можно увидеть в различных исторических культурах: в Древней Греции и Риме, Египте и Анатолии, Карфагене, Древнем Китае и Индии.
Не лишним будет отметить, что многие из техник и методов обработки металла были изобретены китайцами, а уж затем все они были освоены европейцами. Речь идет, в частности, о выплавке чугуна, изобретении доменной печи или гидромолота.
А вот лидерами в сфере ковки металлов и горнорудной добычи, как выяснили недавно исследователи, были древние римляне.
История развития металлургии в Африке, Юго-Восточной Азии и Австралии
Как развивалась металлургия в других регионах Земли? Известно, что во второй половине I тысячелетия до нашей эры на территории Юго-Восточной Азии уже активно применяли орудия труда из кричного железа. Вначале это были биметаллические изделия, а немного позже они изготавливались целиком из железа.
Население Древнего Китая тоже было знакомо с биметаллическими вещами. Для их производства применялось железо метеоритного происхождения. Первые сведения о подобных изделиях в Китае датируются VIII веком до н.э.
А вот к середине первого тысячелетия до нашей эры в этой части света начинается производство настоящего железа. Именно китайцы первыми освоили технику получения чугуна, и сделали они это намного раньше, чем европейцы.
Африканский регион тоже внес свою значимую лепту в общемировой процесс развития металлургии. Именно в Африке изобрели цилиндрический горн для производства стали, который не был известен другим народам мира.
Многие историки уверены, что африканцы научились производить железо абсолютно самостоятельно, без каких-либо влияний извне. Около 2600 лет назад железо уже появилось в ряде стран и территорий «черного континента»: в Судане, Ливии и Нубии.
Отдельные африканские племена, как предполагают исследователи, и вовсе «перескочили» из каменного века – сразу в железный.
В общем и целом, производство железа в Африке было полностью освоено в пределах второй половины I тысячелетия до н.э. Любопытно, что производство меди здесь освоили даже немного позже. И если из меди на этом материке делали украшения, то из железа изготавливали исключительно орудия труда. Что касается «южной земли» – материка Австралии, то здесь черная металлургия начала развиваться только в период Великих географических открытий (в XVI-XVII веках).
Особенности развития металлургии в Америке
Для Нового Света было характерным существование сразу нескольких центров ранней металлургии. Один из таких очагов находился в Андских горах, которые славятся богатыми рудными полезными ископаемыми. Первым металлом здесь стало золото. Кроме того, в Андах производили изделия из серебра. На территории современного государства Перу во второй половине II тысячелетия до н.э. был получен сплав серебра с медью – тумбага, который стал необычайно популярен в Южной Америке. В Центральной Америке люди познакомились с металлом лишь в первом тысячелетии до нашей эры. Причем, его сюда привезли. Племена майя освоили ремесло получения металла только к VII столетию нашей эры. Однако к этому времени их цивилизация уже подходила к своему закату. Первым металлом Северной Америки стала медь. Затем здесь научились делать железо (вначале метеоритное, а немного позже – кричное). Это случилось в первом тыс. до н.э., причем, западные районы континента в этой сфере развивались намного быстрее.
Изобретение сыродутного процесса
Один из самых древних способов получения железа называется сыродутным (от слов «дуть» и «сырой»). Печи рыли прямо в земле, как правило, на склонах рельефа. В небольшие горна с железорудной породой поступал (задувался) сырой (холодный) воздух. На ранних этапах освоения данного способа воздушная тяга была естественной, но позже ее заменили искусственной – воздух в печи стали нагнетать.
Дно печей засыпали углем, сверху слоями клали руду и уголь. Последний во время своего горения выделял окись углерода – газ, который выполнял функцию восстановления окислов железа.
Стоит отметить, что при сыродутном способе железо не столько плавилось, сколько «варилось», так как этот процесс создавал температуру, недостаточную для плавки железа (около 1200 градусов по Цельсию). Исходя из этого, «вареное» железо в виде губчатой массы, напоминающей тесто, располагалось на дне печи.
Эта масса, как правило, включала в себя многочисленные примеси и остатки угля (правда, в отдельных случаях шлаки отводили из печи по специальному желобу).
Чтобы производить из такого субстрата какие-либо изделия, приходилось вначале извлекать из крицы посторонние примеси. Делалось это при помощи ковки – холодной и горячей. В конечном итоге, можно было получить кричное железо для последующего использования.
«Изобретение» сыродутного метода железного производства, как предполагают историки, произошло при непосредственной выплавке свинца или меди.
Как известно, этот процесс сопровождался добавлением в плавильные печи не только угля и соответствующей руды, но и гематитов. И именно по такому сценарию, скорее всего, и были получены человеком первые крицы железа.
Вполне возможно, что печи по выплавке меди просто напросто плавно превратились в сыродутные печи.
Так сложилось, что получить медь или олово намного проще, нежели железо. Даже не смотря на то, что медные и оловянные руды в природе встречаются гораздо реже, чем железные. Именно поэтому сыродутный процесс оказался очень важным этапом в развитии черной металлургии. Эта технология постоянно улучшалась: с помощью усовершенствования дутья или увеличения размеров печей.
Однако все эти улучшения не решали главную проблему: кричное железо практически не содержало в себе углерода, а значит, оно не могло конкурировать с бронзой. Вещи из него были недостаточно твердыми, в сравнении с изделиями из бронзы. Именно по этой причине железо в те времена использовалось в большей мере для изготовления украшений.
В производстве железа просто необходимо было что-то менять.
- Освоение технологии цементации и закалки железа
- Развитие металлургии в Средние Века
- Изобретение печей нового типа – блауофенов
- Возникновение доменных печей
- Развитие металлургии в XIX и XX веках
Следующий виток прогресса в развитии металлургического дела заключался в возникновении технологии так называемой «цементации», а также закалки и термического отпуска железа. С освоением этих трех процессов связано начало полноценного Железного века. Под цементацией подразумевается процесс искусственного насыщения крицы углеродами. Эта технология была освоена человеком в первую очередь. Для цементации кричного железа использовались различные вещества. Вначале кричную массу прокаливали в костном угле, позже – в других веществах с большим содержанием углеродов. Освоение технологии цементации подарило человеку возможность получать первые, хоть и весьма примитивные, образцы стали. «Цементированное» железо уже выигрывало в сравнении с бронзой по своей твердости. При этом степень насыщения крицы углеродами зависела от температуры нагревания железа. Вслед за открытием техники цементации был обнаружен эффект закалки. Человек с удивлением для себя обнаружил, что насыщенное углеродами и охлажденное железо становится еще крепче. Для такого охлаждения использовалась вода, снег, либо железо просто оставляли на открытом холодном воздухе. Эффект был даже в последнем случае. Оба вышеописанных процесса, вероятнее всего, были открыты человеком случайно. Вряд ли древние кузнецы могли объяснить истинную природу этих процессов. Об этом свидетельствуют и найденные письменные источники тех времен. В частности, в них можно отыскать весьма любопытные моменты. Так, факт усиления крепости железа при закалке часто объяснялось фантастическими или мистическими теориями. Например, в летописи из Малой Азии, датированной девятым веком до нашей эры можно найти колоритный способ закалки железа посредством «погружения кинжала» в тело «мускулистого раба». Именно сила раба, по мнению автора данного текста, делало металл более твердым. Не менее интересен и отдельный фрагмент, взятый из «Одиссеи» Гомера, где выжигание глаза циклопа сравнивается с погружением раскаленного железного тесака в ледяную воду. Причем, последнюю процедуру Гомер именует как «лечение топора». Исходя из этого, древние греки, вероятно, не понимали природу процесса закалки металла, но придавали ему особый, магический смысл. Закаленная сталь имеет один существенный недостаток – это излишняя хрупкость. Существенно снизить ее позволило открытие технологии термического отпуска железа. Данная технология заключается в нагревании изделий до 727 градусов по Цельсию (это граничная температура деформации структуры железа). Не стоит думать, что освоение технологий цементации, отпуска и закалки железа было одномоментным. На самом деле эти процессы длились около тысячи лет! Но именно открытие и совершенствование этих трех технологий раз и навсегда поставило жирную точку в непримиримой конкурентной борьбе между бронзой и железом. В эпоху Средневековья плавильные печи уже существенно преобразились. Во-первых, в высоту они достигали двух-трех метров. А во-вторых, они работали при помощи энергии воды: воздуходувы приводили в движение специальные трубы или большие водяные колеса. В средневековой Европе были распространены так называемые «штукофены» – огромные и высокие печи, которые вывели черную металлургию на новый этап в ее развитии. Эти печи были оснащены 4-х метровой трубой для усиления тяги и водяными двигателями. Иногда мехи приводили в движении несколько рабочих. Железистую крицу извлекали из такой печи раз в сутки. Любопытна история изобретения и проникновения штукофенов в Европу. Изобрели их в Индии еще в первом тысячелетии до н.э. Затем новое изобретение попало в соседний Китай, а оттуда, в VII веке уже нашей эры – в арабский мир. В XIII столетии арабы привезли эти чудо-печи на юг Пиренейского полуострова, откуда они быстро распространились по всей Европе. По производительности и техническим параметрам штукофен был на голову выше своих предшественников – сыродутных печей. Температура плавки в нем достигалась более высокая, что давало возможность получать полноценный чугун. В сутки штукофен мог выдавать более двух центнеров железа. Правда, чугун из такой установки был, как правило, непригоден. Дело в том, что он оказывался на дне печи, смешиваясь со шлаками. Чтобы очистить его, требовалась ковка, которой чугун не поддавался. Других способов его очистки на то время еще не знали. Все же, некоторые народы все-таки умудрялись находить применение даже такому, «грязному» чугуну. Индусы, например, изготавливали из него гробы для усопших. А вот в Османской империи из штукофенного чугуна делали ядра для пушечных орудий. Средневековые металлурги установили важную закономерность: чем выше температура плавления руды в печи – чем больше продукта (железа) можно получить на выходе. После этого открытия они начали пытаться модернизировать свои штукофены: увеличивать высоту труб и налаживать систему предварительного нагрева воздуха. Так в XV веке в Европе появились печи нового вида – блауофены. Однако модернизированные печи почти сразу же неприятно удивили металлургов. Выход конечного продукта действительно вырос, но вместе с этим, на 20 % повысилось и количество отходов – малопригодного чугуна. Грязное, или, как его еще называли – «свиное» железо так само застывало на дне новых печей. Смешанный со шлаками чугун, как и прежде, был абсолютно не пригоден для литья. Как правило, его пускали на производство кувалд, наковален и прочего грубого инвентаря. Правда, пушечные ядра из блауофенного чугуна выходили более качественными. Еще один позитивный момент блауофенов – количество стали по краям железной крицы в этих печах существенно увеличилось. Разумеется, это порадовали металлургов. Однако, с другой стороны, отделить такую сталь от кричного железа было очень и очень сложно. И в этой ситуации разные народы пошли по разным путям, решая эту сложную проблему. Так, в Индии все силы бросили на усовершенствование техники ковки, чтобы добиться более равномерного распределения углеродов в продукте. И эти усилия дали свои плоды – индусы получили булат – очень прочную и упругую сталь, из которой производилось первоклассное на то время холодное оружие. Булат также производился в Иране и Центральной Азии. Китайцев и европейцев, в отличие от индусов, интересовало вовсе не качество, а количество конечного продукта. Поэтому именно они вскоре открыли так называемый передельный процесс, который невероятно сильно повлиял на развитие металлургии в целом. До 1500 тонн качественного чугуна в день – такое средневековым металлургам даже не снилось. Но это стало обыденной суточной нормой при появлении доменных печей. Благодаря большим размерам, предварительному нагреву воздуха и системе механического дутья, такая печь способна была извлекать железо из рудной массы и превращать его в чугун. Последний при этом выходил наружу в расплавленном виде. Правда, ковка все равно была необходима. Но теперь шлаков было уже намного меньше в массе, а железа – больше. Еще одно достоинство доменной печи заключалось в непрерывности ее работы. Установка функционировала круглые сутки, не останавливаясь и не охлаждаясь. В XVIII веке в европейской металлургии был открыт еще один процесс – пудлинговый. Он предполагал очищение чугуна в печи с помощью газа, получаемого при сгорании угля или другого минерального топлива. К слову, в Древнем Китае этим способом даже производили сталь еще в Х столетии. При такой технике очистки железистые частицы собирались в комочки. Затем они сваривались в кузнечной или в специальной прокатной машине, и из них получали различные железные заготовки. Пудлинговый метод позволил увеличить производительность железа до 140 кг в час. Очередной скачок в процессе развития металлургического дела произошел в конце XIX века. В этот период, практически одновременно, в производство металла внедряются три абсолютно новых способа: мартеновский, томасовский и бессемеровский. Все эти методы увеличили объемы производства стали колоссально – до шести тонн в час. Спустя полвека в металлургию внедряют еще более новые процессы. Это, в частности, непрерывная разливка стали и кислородное дутье. Продувание кислородом расплавленного металла в конверторных печах существенно ускорило скорость химических реакций.
История, как известно, движется по спирали. Это касается и истории промышленного производства.
Тысячи лет назад человек строил в земле сыродутные печи и получал, с помощью одностадийного метода, качественное и устойчивое к коррозии железо с малым количеством примесей.
И сегодня ученые вновь вернулись к технологии одностадийных процессов, развивая метод обогащения руды и производства стали в электропечах.
История металла, в каких годах был обнаружен
Есть в настоящее время 97 известных металлов , до 19 — го века, только 47 были обнаружены и из этих металлов, 33 из них были обнаружены в 18 — м веке. Семь металлов, которые люди идентифицировали и нашли применение в доисторические времена, были названы металлами древности . Они состояли из золота, серебра, меди, олова, свинца, железа, ртути.
Металлы древности
Золото
Золото было обнаружено примерно в доисторические времена, в каменном веке. Оно использовалось для денежных систем. Золото было найдено путем просеивания песка возле рек и пляжей, обнаружив твердые частицы золота. Во время правления царя Креза (561 — 547 гг. До н.э.) чеканились первые монеты из чистого золота
медь
Медь была обнаружена примерно в доисторические времена и была очень значительным открытием, поскольку все первые инструменты, оружие и приспособления были сделаны из меди. В северном Ираке был обнаружен медный кулон, который, как полагают, датируется примерно 8700 г. до н.э.,
Серебро
Серебро было обнаружено примерно в 3000 году до нашей эры и в основном использовался в денежных системах, особенно в Римской и Китайской империях.
Этот тип серебра представлял собой грубую огранку, известную как рубленое серебро, которую можно было использовать в торговле или для хранения богатства.
В древней культуре серебро также можно было использовать для изготовления украшений, посуды и предметов, используемых в религиозных ритуалах.
Свинец
Свинец был обнаружен в древние времена и использовался для различных вещей. Римляне использовали этот металл для производства водопроводных труб и в качестве облицовки для ванн. Фактически, один из самых старых известных свинцовых артефактов, которому, как считается, 5820 лет, — это статуя, найденная в храме Осириса на месте Абидоса.
Олово
Олово было обнаружено примерно в 2100 году до нашей эры и использовалось как полироль для предотвращения коррозии, а также в качестве сплава.
Например, олово и медь производили бронзу в процессе плавки, которое включало нагревание двух материалов с целью их плавления в жидкую форму.
В этом случае олово и медь смешиваются вместе, образуя жидкую бронзу, которую затем охлаждают, чтобы создать металл.
Железо
Железо было обнаружено около 3500 г. до н.э. в процессе плавки. Это породило железный век примерно в 1200 году до нашей эры, когда металл обычно использовался для изготовления инструментов и оружия.
Ртуть
Ртуть была обнаружена около 1500 г. до н.э. Каждая цивилизация, знающая о ртути (Китай, Греция, Рим и некоторые части Индии), имела свои легенды о ртути, начиная от использования ее в качестве лекарства и заканчивая талисманом.
Ртуть также была объединена с серой для создания красноватого минерала, который использовался в качестве пигмента для окрашивания одежды и полотенец.
Он также использовался, чтобы помочь мех склеивать в фетровых шапках в 18 — м и 19 — го века.
Основные металлы и когда они были приблизительно открыты
- мышьяк — 1250
- кобальт — 1739 г.
- цинк- 1746 г. (но известен грекам и римлянам до 20 г. до н. Э.)
- платиновый- 1750 г.
- никель- 1751
- марганца- 1774 г.
- вольфрам- 1783 г.
- уран- 1789 г.
- титан- 1791 г.
- бериллий- 1797 г.
- алюминий- 1825 г.
- галлий- 1875 г.
Другие металлы
- молибден- 1781 г.
- цирконий- 1789 г.
- иттрий — 1794 г.
- хром- 1798 г.
- ниобий и ванадий- 1801
- тантал- 1802 г.
- иридий, палладий, церий и родий- 1803 г.
- калий и натрий- 1807 г.
- литий, кадмий и селен- 1817 г.
- лантан — 1839 г.
- эрбий и тербий- 1843 г.
- рутений- 1844 г.
- цезий- 1860 г.
- рубидий и таллий- 1861 г.
- индий- 1863 г.
- holmium- 1878 г.
- тулий, самарий и скандий- 1879 г.
- гадолиний- 1880 г.
- празеодимий неодим- 1885 г.
- диспрозий и германий- 1886 г.
- полоний и радий- 1898 г.
- актиний- 1899 г.
- европий- 1901 г.
- лютеций- 1907 г.
- протактиний- 1913 г.
- гафний- 1923 г.
- рений- 1925 г.
- технеций- 1937 г.
- франций- 1939 г.
- прометий- 1945 г.
Трансурановые элементы
- нептуний и плутоний- 1940 г.
- кюрий и америций- 1944 г.
- беркелий- 1949 г.
- калифорний- 1950 г.
- эйнштейний- 1952 г.
- fermium- 1953 г.
- менделевий- 1955 г.
- нобелий- 1963 г.
- лоуренсий- 1965 г.
Металлический забавный факт
Знаете ли вы, что существует множество различных типов стали, включая нержавеющую сталь, оцинкованную сталь и углеродистую сталь?
Вы хотите сдать металлолом в Симферополе?
Если вы хотите сдать металлолом в Симферополе, то вы попали в нужное место. Продажа металлолома — отличный способ заработать дополнительные деньги, а также оказать положительное влияние на окружающую среду.
Если вы хотите продать металлолом, свяжитесь с нами по телефону +7 (978) 265-33-34.