Этот химический элемент жизненно важен в буквальном смысле: из него состоят наши кости и зубы. Кальций – это также морские раковины, цветные мелки, сталактиты и сталагмиты в пещерах.
Что представляет собой
Кальций – это химический элемент периодической системы Д. И. Менделеева под №20. Мягкий серебристо-белый металл блестит, но затем тускнеет под пленкой-оксидом.
- Состоит из шести стабильных изотопов, при этом 97% состава приходится на Ca40.
- Относится к щелочноземельным металлам.
- Международное обозначение – Calcium (Ca).
История
Применение кальциевых минералов – мрамора, гипса, известняка – исчисляется тысячелетиями.
Гипс
Чистый металл первым в истории получил британский химик Гемфри Дэви (1808 год). Для этого он применил электролиз к смеси из оксида ртути и мокрой гашеной извести. Получив амальгаму, отделил ртуть.
Он же предложил латинское название элемента: calcis означает мягкий камень, известка.
Физико-химические характеристики
Кальций представлен двумя модификациями кубической решетки: с гране- и объемноцентрированной структурой.
Металл наделен многими достоинствами: пластичен, режется ножом, обрабатывается прессованием, прокаткой.
Химические свойства проявляются при нагревании:
- Взаимодействие с горячей водой приводит к образованию водородного «фонтана». Но реакция проходит без взрывов или горения.
- Взаимодействует с кислотами, неметаллами, образуя соединения.
- Даже при комнатной температуре во влажном микроклимате покрывается пленкой.
Нагреваясь в кислороде либо на воздухе, кальций, его растворимые соли горят. Пламя получается красно-оранжевым. По цвету его легко отличить от других металлов.
Кальций в атмосфере аргона
Химическая активность вещества зашкаливает. Для устранения этого недостатка металл хранят в керосине, растопленном парафине либо закупоренном сосуде.
Ка́льций/Calcium (Ca), 20 |
40,078(4) а. е. м. (г/моль) |
[Ar] 4s2 |
197 пм |
174 пм |
(+2e) 99 пм |
1,00 (шкала Полинга) |
−2,76 В |
2 |
589,4 (6,11) кДж/моль (эВ) |
1,55 г/см³ |
1112 К; 838,85 °C |
1757 К; 1483,85 °C |
9,20 кДж/моль |
153,6 кДж/моль |
25,9 Дж/(K·моль) |
29,9 см³/моль |
кубическая гранецентрированная |
5,580 Å |
230 K |
(300 K) (201) Вт/(м·К) |
7440-70-2 |
Уникальные свойства кальция как металла проявляются при усилении давления.
Под давлением он ведет себя как полупроводник, затем как металл, потом подобно сверхпроводнику. По проводимости в разы превосходит все химические элементы (например, ртуть – вшестеро).
Присутствие в природе
Кальций – третий по распространенности в земной коре среди металлов, пятый среди всех элементов. Четвертый по количеству минералов (385).
Однако высокая химическая активность исключает присутствие элемента в свободном виде:
- Это компонент минералов и соединений. Самые распространенные минералы – гипс, кальцит, алебастр, флюорит, апатит, доломит.
Апатит
- Из кальцита состоит известняк. Метаморфизм превращает его в мрамор. Самая известная разновидность известняка – мел.
Горная порода кальцит
Вещество с формулой СаСО3 – обычный мел.
- Щелочноземельный металл обнаружен в каменных метеоритах – как почти ненаходимые на земле сульфиды.
- Тонна земной коры содержит 32,7 кг кальция, литр морской воды – 410 мг.
- Из морской воды кальций как строительный материал вытаскивают моллюски, кораллы.
- Концентрацией кальция в составе определяется степень жесткости воды.
Технология получения
Конечный продукт промышленного производства – металлический кальций.
Металлический Кальций
Получение металла проходит двумя методами:
- Электролиз. Расплавляют CaCl2, задействуя медно-кальциевый анод. Из полученного медно-кальциевого сплава (2:1) отгоняют металл.
- Алюминотермия. Прокаливается смесь CaO и порошковый алюминий. Конденсат из кальциевых паров аккумулируется на охлаждаемой поверхности.
Для обоих способов получения металла требуется вакуум и 960-1900°С.
Единственный производитель кальция в Европе – Чепецкий механический завод. Его открыли в 1949 году для нужд отечественной урановой промышленности. Уже тогда СССР отработал процесс восстановления урана кальцием. Сегодняшний ассортимент шире.
Где используется
Утилитарные характеристики металла обусловили сферы применения.
Применение Кальция
Промышленность
Львиная доля продукции металлургических комбинатов достается промышленному комплексу.
Здесь миссия кальция многогранна:
- Восстановление редкоземельных, тугоплавких элементов из соединений. Речь о хроме, никеле, меди, тории, уране.
- Удаление серы из бензина, керосина, других нефтепродуктов.
- Раскисление стали и сплавов цветных металлов.
- Получение антифрикционных сплавов.
- Очистка электровакуумных приборов от воздуха, других газов.
- Обезвоживание органических растворителей.
Металл используется при производстве аккумуляторных батарей, подшипников, оболочек кабелей.
Наука
- Изотоп Ca-48 – материал с высоким КПД для производства сверхтяжелых элементов.
- Кальцием восстанавливают уран.
- С его помощью ученые пополняют таблицу Менделеева.
Другие сферы
Кальциевые материалы нашли применение на бытовом уровне:
- Строительный материал (известняк, гипс, мрамор).
- Сырье при производстве гипса, включая медицинский.
- Дезинфектор (хлорка).
- Мелки для рисования.
- Аптечные препараты, БАДы (особенно с витамином D).
- Эстетично выглядящие образцы (флюорит, кальцинит, мрамор) попадают в минералогические коллекции.
- Кальций – важный для биологических организмов макроэлемент (1,6-2,1% по массе): он есть в растениях, организме животных, человека.
Жизненные процессы
Макроэлемент аккумулируется костями и зубами.
Известь (карбонат кальция) – строительный материал ракушек, кораллов, яичной скорлупы, накипи в чайнике.
Вещество задействовано в следующих процессах:
- Свертывание крови.
- Сокращение мышц.
- Секреция гормонов.
Тело человека массой 60 кг содержит полтора килограмма кальция.
Достаточное количество металла критично для детей и подростков: их скелет растет каждую минуту. У младенцев может проявиться рахитичность.
Питание
Макроэлемент поступает в организм во время еды. В детском возрасте продукт номер один – молоко.
Рацион взрослых разнообразнее. Веществом насыщены продукты всех групп:
- Цельнозерновой хлеб, гречка.
- Морепродукты, рыба (особенно мягкие кости).
- Бобовые.
- Орехи, свежий кунжут.
- Листовой салат, укроп, петрушка, спаржа.
Всасыванию кальция содействует лактоза, препятствуют кофе, углеводы, пальмовое масло, животные жиры (кроме сала).
Нормы
Суточная потребность в макроэлементе определяется возрастом (г):
Возраст (лет) | Количество кальция (мг) |
0-6 | 1490 |
7-9 | 750 |
10-12 (мальчики) | 910 |
10-12 (девочки) | 1250 |
13-19 | 1250 |
20-49 | 1050 |
49+ | 1150-1350 |
Беременным и кормящим матерям требуется повышенная норма вещества.
Симптомы нехватки/переизбытка
Дефицит металла в организме проявляется многопланово:
- судороги, онемение конечностей, суставная боль;
- тахикардия;
- гипертония;
- расслоение, ломкость ногтей.
На ментальном плане это депрессия, нервозность.
Хроническая нехватка макроэлемента ведет к хрупкости костей (остеопорозу).
Об избытке макроэлемента сигнализируют отвращение к еде, неутолимая жажда, расстройство ЖКТ (тошнота, рвота), повышенное мочеотделение, слабость.
Избыток вещества опасен: организм «цементируется».
Максимальная суточная доза кальция для взрослых – 2,5 г.
Цены
На российском рынке представлена промышленная и аптечная продукция.
Цены на промышленный кальций (руб. / кг):
- металлический – 450;
- кусковой (чистота: 99,82%) – 1500;
- хлористый технический – 47;
- хлористый пищевой – 95.
Аптечный сегмент представлен отечественной и зарубежной продукцией. Упаковка глюконата кальция (10 таблеток) российского производства стоит 15-25 руб., препарата «Кальций-Д3 Никомед» – 300 – 700 руб.
Проверить совместимость мужчины и женщины по Знаку Зодиака
Физические свойства металлов: твердость, плотность и др
Металлы имею такие физические свойства, как твердость, температуру плавления, плотность, пластичность, электропроводность, теплопроводность и цвет.
Твёрдость:
Все металлы, кроме ртути и, условно, франция, при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.
Таблица твёрдости металлов по шкале Мооса:
Твёрдость | Металл |
0.2 | Цезий |
0.3 | Рубидий |
0.4 | Калий |
0.5 | Натрий |
0.6 | Литий |
1.2 | Индий |
1.2 | Таллий |
1.25 | Барий |
1.5 | Стронций |
1.5 | Галлий |
1.5 | Олово |
1.5 | Свинец |
1.5 | Ртуть |
1.75 | Кальций |
2.0 | Кадмий |
2.25 | Висмут |
2.5 | Магний |
2.5 | Цинк |
2.5 | Лантан |
2.5 | Серебро |
2.5 | Золото |
2.59 | Иттрий |
2.75 | Алюминий |
3.0 | Медь |
3.0 | Сурьма |
3.0 | Торий |
3.17 | Скандий |
3.5 | Платина |
3.75 | Кобальт |
3.75 | Палладий |
3.75 | Цирконий |
4.0 | Железо |
4.0 | Никель |
4.0 | Гафний |
4.0 | Марганец |
4.5 | Ванадий |
4.5 | Молибден |
4.5 | Родий |
4.5 | Титан |
4.75 | Ниобий |
5.0 | Иридий |
5.0 | Рутений |
5.0 | Тантал |
5.0 | Технеций |
5.0 | Хром |
5.5 | Бериллий |
5.5 | Осмий |
5.5 | Рений |
6.0 | Вольфрам |
6.0 | β-Уран |
Температура плавления:
- Температуры плавления чистых металлов лежат в диапазоне от −38,83 °C (ртуть) до 3422 °C (вольфрам).
- Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые металлы, например, олово и свинец, могут расплавиться на обычной электрической или газовой плите.
- В зависимости от температуры плавления металлы делятся на: легкоплавкие (до 600 °C); среднеплавкие (от 600 до 1600 °C); тугоплавкие (выше 1600 °C).
Таблица температуры плавления легкоплавких металлов и сплавов:
Название металла | Температура плавления, оС |
Ртуть | -38,83 |
Франций | 25 |
Цезий | 28,44 |
Галлий | 29,7646 |
Рубидий | 39,3 |
Калий | 63,5 |
Натрий | 97,81 |
Индий | 156,5985 |
Литий | 180,54 |
Олово | 231,93 |
Полоний | 254 |
Висмут | 271,3 |
Таллий | 304 |
Кадмий | 321,07 |
Свинец | 327,46 |
Цинк | 419,53 |
Таблица температуры плавления среднеплавких металлов и сплавов:
Название металла | Температура плавления, оС |
Сурьма | 630,63 |
Нептуний | 639 |
Плутоний | 639,4 |
Магний | 650 |
Алюминий | 660,32 |
Радий | 700 |
Барий | 727 |
Стронций | 777 |
Церий | 795 |
Иттербий | 824 |
Европий | 826 |
Кальций | 841,85 |
Лантан | 920 |
Празеодим | 935 |
Германий | 938,25 |
Серебро | 961,78 |
Неодим | 1024 |
Прометий | 1042 |
Актиний | 1050 |
Золото | 1064,18 |
Самарий | 1072 |
Медь | 1084,62 |
Уран | 1132,2 |
Марганец | 1246 |
Бериллий | 1287 |
Гадолиний | 1312 |
Тербий | 1356 |
Диспрозий | 1407 |
Никель | 1455 |
Гольмий | 1461 |
Кобальт | 1495 |
Иттрий | 1526 |
Эрбий | 1529 |
Железо | 1538 |
Скандий | 1541 |
Тулий | 1545 |
Палладий | 1554,9 |
Протактиний | 1568 |
Таблица температуры плавления тугоплавких металлов и сплавов:
Название металла | Температура плавления, оС |
Лютеций | 1652 |
Титан | 1668 |
Торий | 1750 |
Платина | 1768,3 |
Цирконий | 1855 |
Хром | 1907 |
Ванадий | 1910 |
Родий | 1964 |
Технеций | 2157 |
Гафний | 2233 |
Рутений | 2334 |
Иридий | 2466 |
Ниобий | 2477 |
Молибден | 2623 |
Тантал | 3017 |
Осмий | 3033 |
Рений | 3186 |
Вольфрам | 3422 |
Плотность:
В зависимости от плотности металлы делят на лёгкие (плотность от 0,53 до 5 г/см³) и тяжёлые (от 5 до 22,6 г/см³).
Самым лёгким металлом является литий (плотность 0,53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22,6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.
Пластичность:
Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними.
Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются.
Пластичность зависит и от чистоты металла. Так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.
Электропроводность:
Все металлы хорошо проводят электрический ток, обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля.
Серебро, медь и алюминий имеют наибольшую электропроводность. По этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также и натрий.
В экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием.
Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.
Теплопроводность:
Теплопроводность металлов зависит от подвижности свободных электронов.
Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла. Широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
Наименьшая теплопроводность — у висмута и ртути.
Цвет:
Цвет у большинства металлов примерно одинаковый — светло-серый, иногда с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
Металлы подразделяются на цветные и черные.
Чёрные металлы – железо и сплавы на его основе (стали, ферросплавы, чугуны). К чёрным металлам также зачастую относят марганец и, иногда, – хром и ванадий.
Цветные металлы — это особый класс нержавеющих металлов и сплавов, в составе которых нет железа. Металлы называются цветными, потому что каждый из них имеет определенный окрас. К цветным металлам относятся медь, молибден, свинец, цинк, олово, никель, кадмий, кобальт, алюминий, титан, магний, висмут, вольфрам, ртуть, золото, платину, серебро, палладий, родий, рутений, осмий, иридий.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
карта сайта
Сплавы кальция
2. Физико-химические основы процесса 3. Технология выплавки силикокальция 4. Технология выплавки силикокальция марок СК10 и СК15 5. Применение и состав сплавов кальция 6.
Сырые материалы для выплавки сплавов кальция
Кальций — элемент IIA группы периодической системы, его содержание в земной коре составляет 3,6%.
Кальций — один из самых химически активных металлов, имеет следующие физико-химические свойства: атомная масса 40,08; валентность 2; плотность 1,54 г/см3; температура плавления 810° С, кипения 1439° С.
С кислородом кальций дает исключительно прочное соединение — оксид CaO, теплота образования которого 626 кДж/моль (151 790 кал/моль), температура плавления 2587° С, кипения 3627° С.
С углеродом кальций образует прочный карбид CaC2 с температурой плавления 2300° С. С кремнием кальций образует три силицида Ca2Si, CaSi и CaSi2. Кальций и железо взаимно нерастворимы.
Вместе с тем в жидком состоянии и железо, и кальций в отдельности неограничено растворяются кремнием
Кальций в виде сплава с кремнием, (СК25 и СКЗО) или в виде тройного сплава (СК10, СК15) широко используют для раскисления стали, а также для производства ряда комплексных сплавов и модификаторов. Состав силикокальция приведен в табл. 21.
Физико-химические основы процесса
Требования, предъявляемые к кварциту и восстановителю, используемым при производстве силикокальция, аналогичны предъявляемым при производстве ферросилиция.
Основные химические процессы при выплавке сплавов силикокальция связаны с восстановлением SiO2 и CaO углеродом. Восстановление кремнезема углеродом рассмотрено в статье Термодинамика восстановления кремния.
Восстановление чистого оксида кальция описывается уравнением
(CaO) + 3Cт = [CaC2] + {СО}.
Температура начала этой реакции 1765° С. По приведенной реакции образуется карбид кальция. При совместном восстановлении CaO и SiO2 конечным продуктом является силицид кальция
2(SiO2) + (CaO) + 5Cт = [CaSi2] + 5 {СО}.
Совместное восстановление рассматриваемых оксидов начинается при температуре ∼1580°C, т. е. ниже, чем температура начала восстановления отдельных оксидов.
Одновременно в печи идут реакции шлакообразования, например (CaO) + (SiO2) = (CaO·SiO2). Причем образование шлака может происходить раньше, чем начинается восстановление по приведенным выше суммарным реакциям, так как для их протекания необходимы более высокие температуры.
В печи получают развитие процессы восстановления SiO2, CaO и силикатов кальция не только углеродом, но и кремнием, и карбидом кремния, образующихся по схемам, приведенным в статье Термодинамика восстановления кремния, а также карбидом кальция.
При углетермическом производстве силикокальция марок СК25 и СК15 восстановление кальция и кремния облегчается присутствием железа, которое разрушает карбиды и, растворяя силициды кальция, уводит их из зоны реакции, что способствует протеканию процесса восстановления.
При силикотермическом восстановлении извести, выгодно отличающемся отсутствием карбидообразования, идет реакция
2 (CaO) + 3[Si] = 2 [CaSi] + (SiO2).
Технология выплавки силикокальция
Силикокальций марок СК25 и СК30 выплавляют в печах мощностью 10—15 МВ-А с угольной футеровкой при рабочем напряжении 120—140 В и силе тока на электродах 50— 55 кА, что обеспечивает глубокую и устойчивую посадку электродов в шихте (~500 мм).
В результате вращения ванны печи (в секторе 20—25° со скоростью один оборот за 70 ч) создаются необходимые условия для разрушения карбидов, что позволяет выплавлять силикокальций отдельными кампаниями длительностью по два с половиной— три месяца.
После этого для разрушения образовавшегося в печи «козла» из карбидов и шлака необходимо в течение одного — полутора месяцев выплавлять 45%-ный ферросилиций и затем снова можно в течение двух с половиной — трех месяцев плавить силикокальций.
Вследствие зарастания ванны карбидами при выплавке силикокальция приходится проводить один раз в течение полутора лет ремонт печи с заменой футеровки. После очередного капитального ремонта для разогрева печи в ней в течение месяца выплавляют 45%-ный ферросилиций.
При расчете шихты исходят из того, что использование кальция составляет 67%, кремния 75%. Избыток твердого углерода (с учетом добавок) в шихте должен составлять в первой кампании (на чистой печи) 10—12% и на второй кампании (после разрушения «козла») 15—16%. Колоша шихты имеет следующий состав: 200 кг кварцита, 85 кг извести, 50 кг древесного угля, 30 кг каменного угля и 90—100 кг коксика.
Выплавку силикокальция ведут непрерывным процессом и шихту загружают в печь по мере ее проплавления. Расход электроэнергии на колошу шихты (с 200 кг кварцита) составляет 1630—1700 кВт-ч.
Для обеспечения хорошей работы печи необходимо как можно дольше сохранять низкий уровень колошника.
С этой целью шихту непрерывно подгребают к электродам и ежесменно удаляют настыли карборунда с поверхности колошника.
Восстановительные процессы при выплавке силикокальция протекают в наиболее горячих зонах печи, т. е. у электродов, вокруг которых образуются газовые полости, имеющие в своей нижней части карбидные «чашки». Образовавшийся сплав скапливается в полости («щели»), находящейся на уровне выпускного отверстия.
Сохранение этих чашек и наличие полости являются обязательными условиями нормального протекания процесса. Этому способствует работа с большим избытком восстановителя, однако чрезмерное развитие процесса карбидообразования приводит к зарастанию печи карбидами, в основном карборундом, и перекрытию полости и ходов из нее, т. е.
к прекращению выхода сплава, шлака и газа из летки.
Для предотвращения этого в печь после каждого выпуска сплава вводят, если это позволяет состав сплава, добавки кварцита в количестве 400—600 кг на плавку. Их загружают ближе к электроду, после чего сюда подгребают горячую шихту, а затем сверху загружают свежую, холодную шихту.
При нормальной работе из печи должно выходить минимальное количество шлака, содержащего примерно 45—55% SiO2; 15—20% CaO; 10% SiC; 10—15% CaC2; 2—3% Al2O3; остальное Mg, FeO и др.
Выпуск силикокальция осуществляют каждые два часа в футерованный графитовой плиткой ковш и затем сплав разливают в чугунную изложницу.
Технология выплавки силикокальция марок СК10 и СК15
Выплавку силикокальция ведут в закрытой печи мощностью 3,5 МВ-А с вращающейся ванной и угольной футеровкой при рабочем напряжении 127 В.
Шихту рассчитывают, исходя из следующих условий использования кремния ферросилиция: используется на восстановление 15%, переходит в сплав 55%, окисляется кислородом воздуха 20%, взаимодействует с железными стержнями, используемыми для перемешивания, 10%. Избыток извести принимается равным 10%, расход плавикового шпата 15 кг на 100 кг ферросилиция.
Расчетный состав колоши шихты следующий: 200 кг извести, 196 кг ферросилиция, 30 кг плавикового шпата. Оптимальное отношение в шихте СаО и свободного кремния колеблется в пределах 1,7—2. Увеличение этого значения приводит к повышению содержания в сплаве кальция и снижению содержания железа.
Сплав становится более легким, дуга начинает гореть непосредственно на сплаве, что приводит к увеличению потерь кальция и кремния, снижению используемой мощности печи, ухудшению отделения сплава от шлака и, следовательно, к увеличению потерь сплава с шлаком.
Плавиковый шпат уменьшает плотность шлака и улучшает разделение сплава и шлака, что сокращает угар и потери сплава.
Процесс плавки — периодический с полным проплавлением шихты. На плавку в течение 2 ч заливают 12 колош шихты. Расход электроэнергии на колошу шихты составляет 380—420 кВт-ч. Нормальная работа: печи характеризуется устойчивым электрическим режимом и содержанием в сплаве 16—19% Са. Шлак выходит из печи равномерно и при остывании рассыпается.
Пониженное содержание кальция в сплаве объясняется избытком ферросилиция в шихте или низким содержанием СаО в извести. Высокое содержание кальция в сплаве является следствием недостатка восстановителя. Это сопровождается уменьшением зоны плавления и всплыванием части сплава над шлаком, что приводит к возрастанию потерь сплава.
Сплав и шлак выпускают из печи одновременно четыре раза в смену в ковш, футерованный графитовой плиткой с теплоизоляционным слоем из шамотного кирпича, и после тщательного удаления шлака разливают в чугунные изложницы. После остывания сплав дробят, очищают и пакуют в металлические барабаны. Шлак содержит 63—68% CaO, 30—33% SiO2 и 2—5% корольков сплава.
Выплавку 15%-ного силикокальция углетермическим способом осуществляют в открытой печи мощностью 15 МВ-А. Колоша шихты состоит из 220 кг кварцита, 85 кг коксика, 50 кг древесного угля, 30 кг каменного угля, 55 кг железной стружки. Плавку ведут непрерывным процессом.
Наблюдаются определенные затруднения в работе летки и при разливке сплава вследствие выхода большого количества жидкого шлака.
Сплав имеет повышенное содержание алюминия (~1%) и углерода и загрязнен шлаковыми включениями. Шлак содержит 20% SiO2, 45% CaO, 30% CaC2 и др.
Сложность технологии и низкие общие технико-экономические показатели делают проблематичной рентабельность такого производства.
Сплав примерно такого же состава может быть получен значительно проще и дешевле путем смешения в ковше жидкого силикокальция и 18%-ного ферросилиция. Ниже приведен расход материалов и электроэнергии на 1 т при выплавке сплавов кальция различными методами:
Применение и состав сплавов кальция
Кальций легко взаимодействует с кислородом, серой, азотом, водородом и многими другими элементами и при высоких температурах восстанавливает оксиды большинства металлов, поэтому его применяют для раскисления и десульфурации расплавленных металлов.
Однако высокая стоимость и сложность хранения и использования металлического кальция ограничили применение его в промышленном масштабе в черной металлургии. Соединения кальция с кремнием — силициды кальция, значительно дешевле и более устойчивы при нормальной температуре.
В связи с этим для раскисления, десульфурации и дегазации стали и литейного чугуна, для регулирования размера и формы неметаллических включений в стали, для графитизации и получения однородного серого чугуна используют силикокальций — сплав кальция с кремнием или тройной сплав кальция, кремния и железа, который обладает повышенной плотностью и кальций которого лучше усваивается жидкой сталью.
Кроме того, силикокальций марок СК10 и СК15 является основой для производства многих комплексных раскислителей и модификаторов. Некоторое количество силикокальция используют в пиротехнике, для получения некоторых чистых металлов кальцийсиликотермическим методом и т. д.
Химический состав сплавов кальция по стандартам ряда стран приведен в табл. 27. Силикокальций марок СК25 и СК30 содержит 2—4 % SiC и более, 3 O2, 36—210 см3 Н2 и до 70 см3 N2 на 100 г сплава.
Содержание серы в них колеблется в пределах 0,05—0,08% и может достигать 0,13—0,20%.
В СК10 и СК15, полученном углеродотермическим способом, содержится св 9,09; CaSi2 81,5; Fe2Si5 4,65; Ca2Si3Al44,23, примесей 0,33.
Силикотермический силикокальций марок СК10 и СК15, производство которого освоено в СССР в последние годы, значительно более чист по содержанию вредных примесей. В пересчете на сплав с 30 % Са он содержит примерно по 0,016 %S и Р, 0,08% С, тогда как для силикокальция марок СК25 и СК30 характерно 0,08 % S, 0,02 % Р и 1,15 % С. Расход силикокальция обычно колеблется в пределах 2—4 кг/т стали.
Сырые материалы для выплавки сплавов кальция
Шихта для углеродотермического производства силикокальция состоит из кварцита, извести, коксика, древесного и каменного угля.
Требования к кварциту и восстановителю, используемым при производстве силикокальция, аналогичны предъявляемым при производстве ферросилиция.
Крупность материалов для плавки должна быть следующей: кварцита 50—100 мм, коксика 5—20 мм, древесного угля 8—100 мм, каменный уголь должен быть в куске
Известь должна быть свежеобожженной и содержать не менее 94 % СаО. Плохо обожженная известь резко повышает расход электроэнергии и восстановителя, снижает производительность печи, производит к расстройству хода ее и к уменьшению продолжительности кампании. Примерный химический состав известняков используемых для получения извести приведен в табл. 28.
При силикотермическом производстве силикокальция может быть использована известь с вращающихся печей крупностью 0—50 мм, содержащая ≥90 % CaO и ≤0,017 % Р.
Однако использование шахтной извести и в этом случае предпочтительно, так как вследствие более высокого содержания CaO экономится ферросилиций, снижается расход электроэнергии и увеличивается производительность печи.
Применяемый при силикотермическом производстве силикокальция ферросилиций должен быть гранулированный или дробленый (50 мм и содержать >55 % CaF2 и 7 % SiO2.
В зарубежной практике производства силикокальция исходным материалом часто является технический карбид кальция, имеющий примерно следующий состав: 78 % CaC2, 17 % CaO и 5 % примесей MgO, Fe2O3, Al2O3, SiO2 и др. Получают его плавкой в мощных (до 100 MB А) электропечах из извести и углеродистого восстановителя при расходе электроэнергии 9000 МДж/т (~2500 кВт-ч/т).
Кальций
КАЛЬЦИЙ, Ca (от лат. Calx, род. падеж calcis — известь *. а. calcium; н. Kalzium; ф. calcium; и. calcio), — химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08. Состоит из шести стабильных изотопов: 40Ca (96,97%), 42Ca (0,64%), 43Ca (0,145%), 44Ca (2,06%), 46Ca (0,0033%) и 48Ca (0,185%). Открыт английским химиком Г. Дэви в 1808.
Физические свойства
Кальций — серебристо-белый лёгкий металл. Известны две кристаллические модификации: а-Ca с гранецентрированной кубической решёткой, а=0,55884±2 нм (26°С); выше 443°С Я-Ca с объёмноцентрированной кубической решёткой, а=0,4480+5 нм (467°С).
Физические свойства кальция: плотность 1550 кг/м3 (20°С); t плавления 842°С; t кипения 1491°С; коэффициент теплопроводности 125 Вт/м•К; уд. теплоёмкость (0-100°С) 623,9 Дж/кг•К; уд.
электросопротивление (при 20°С) 4,6•10-8 Ом•м; температурный коэффициент электросопротивления 4,57•10-3 (при 20°С); коэффициент термического расширения при 0-300°С 22•10-6 К-1. Твёрдость кальция по Бринеллю 200-300 МПа.
Кальций — пластичный металл; хорошо прессуется, прокатывается и подвергается обработке резанием.
Химические свойства
Степень окисления +2. Металлический кальций химически активен, обладает большим сродством к кислороду и при обычной температуре во влажном воздухе покрывается плёнкой (поэтому хранят его в масле или герметически закрытом сосуде).
С горячей водой кальций легко реагирует с образованием гидрооксида Ca(OH)2 и выделением водорода. Энергично взаимодействует, особенно при нагревании, с различными неметаллами (Н2, С, N2, Si, Cl2 и др. с образованием соответственно гидрида, карбида, нитрида, силицида, хлорида и т.д.).
В реакциях с кислотами кальций образует соответствующие соли, вытесняя водород.
Природный кальций
Кальций — один из самых распространённых (5-е место) петрогенных элементов земной коры — 3,27% (по массе). Кларк кальция в каменных метеоритах 1,40%, ультраосновных — 0,7%, основных — 6,72%, средних — 4,65%, кислых породах — 1,58% (по данным А. П. Виноградова).
Кальций входит в состав многих минералов (силикаты, алюмосиликаты, боросиликаты, карбонаты, сульфаты, фосфаты, ванадаты, вольфраматы, молибдаты, титанаты, ниобаты, фториды, хлориды и др.; в метеоритах встречается редчайший сульфид кальция).
В минералах кальция присутствуют замещающие его изоморфно элементы-примеси (Na, Sr, редкоземельные, радиоактивные и другие элементы).
Силикаты (пироксены, амфиболы) и алюмосиликаты (плагиоклазы) кальция — важнейшие породообразующие минералы магматических и метаморфических пород; в условиях гидротермальных и поверхностных процессов становятся устойчивыми и широко распространены карбонаты кальция.
При выплавлении базальтовых магм кальций накапливается в расплаве и входит в главные породообразующие минералы, при фракционировании которых его содержание в дифференциации магмы от основных к кислым породам падает.
При выветривании магматических, метаморфических и осадочных пород кальций выщелачивается и в бассейне осадконакопления выделяется преимущественно в виде органогенных известняков и доломитов, составляющих в среднем около 20% объёма осадочной толщи; в виде терригенной примеси пироксенов, плагиоклаза и др.
, а также карбонатов кальция входит в состав глин и песчаников. Содержание кальция в осадочных породах (по А. Б. Ронову и А. А. Ярошевскому): в глинах 2,9-3,4%, в песчаниках 2,4-4,1%, в карбонатах 27,8-30,3% (первая цифра — в платформенных отложениях, вторая — в геосинклинальных); в океанической воде 0,0408% (по А. П. Виноградову).
Поведение кальция в морской воде контролируется режимом CO2:CaCO3тв+Н2О+CO2 Ca(HCO3)2раств («карбонатное равновесие») при активном участии живого вещества. Кальций из морской воды интенсивно поглощается известняковыми водорослями, моллюсками, кораллами и др. В поверхностном цикле кальция важную роль играют поверхностные и подземные воды.
В известняковых массивах в результате растворения ими кальцита развиваются карстовые явления; в районах с влажным климатом почвы обеднены кальцием. При испарении морской воды в замкнутых бассейнах и солёных озёрах осаждаются помимо кальцита гипс и ангидрит.
Получение и применение
Получают металлический кальций двумя методами: электролизом расплава CaCl2 с использованием медно-кальциевого анода получают сплав Ca — Cu (~65% Ca), из которого в вакууме при 950-1000°С отгоняют Ca; при прокаливании смеси CaO и порошкообразного Al при 1200°С в вакууме выделяющиеся по реакции 6CaO+2Al=3CaOAl2О3+3Ca пары кальция конденсируют на холодной поверхности.
Металлический кальций находит применение при получении антифрикционных сплавов Pb — Na — Ca; сплав Pb — Ca используется для изготовления оболочки электрических кабелей.
Кальций применяется также в качестве восстановителя U, Th, Cr, V, Zr и редкоземельных элементов из их оксидов или галогенидов, для удаления серы из нефтепродуктов, обезвоживания органических растворителей, в качестве поглотителя газов в электровакуумных приборах и др.